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The random network theory has been the long-accepted structural model for silica glasses. Now, a large bilayer
silica sheet thatwas recently imagedwith STM in atomic resolution provides the opportunity for real space struc-
ture analysis. General patterns in the formation of amorphous structures may be identified by looking at larger
building blocks beyond single rings. Assessments of ring arrangements around each Si atom and ring neighbor-
hoods are compared against uncorrelated structure predictions. A theoretical model of a two-dimensional silica
network is investigated in parallel. Significant deviations of the observed structures from the uncorrelated pre-
diction correspond qualitatively with a simple geometric approximation for bond angle frustration.
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1. Introduction

Amorphous materials, also referred to as vitreous materials in the
case of oxide glasses, are described structurally as random networks.
This term refers to W. H. Zachariasen's postulate [1], that amorphous
materials generally consist of the same building blocks as their crystal-
line counterpart, but with random connecting angles. This interpreta-
tion helped explain results gained by X-ray diffraction, the main
source for atomic position data in that time. In pair correlation functions
derived from diffraction, a sharp first peak is explained by uniform
nearest neighbor (NN) distances in the basic building unit. This is true
for both crystalline SiO2 (quartz) and amorphous SiO2 (glass), which in-
dicates that the common primary building units are SiO4-tetrahedra. At
larger radii, the pair correlation function for amorphous materials ex-
hibits increasingly broad and hard-to-identify peaks. Hence, diffraction
experiments corroborate the hypothesis of equivalent small building
units, but provide no direct clues on larger building blocks. Zachariasen
concluded that the tetrahedral building blocks connect through shared
corners to form a network of different sized pores [1]. These pores are
of interest when silica is used as a support for catalysts and the active
ls Science and Technology,
species adsorb inside them. In the two-dimensional representation cho-
sen by Zachariasen, the pores appear as rings of different sizes; for ex-
ample, a five-membered ring is highlighted in the network schematic
in Fig. 1(a).

Since diffraction techniques due to their averaging character could
only provide limited insight on materials without long-range order, re-
searchers have tried extensively to develop models for amorphous net-
works. A. C. Wright and M. F. Thorpe [2] give a brief overview on the
historic development from tabletop models to computer simulations,
as well as the discrepancy with experimental data that still remains
today. One of these models consists of a triangle raft [3] directly based
on the structural considerations presented by W. H. Zachariasen. An al-
gorithm was employed to build a two-dimensional model structure
from triangular building blocks. A large raft created in this waywas pre-
sented in [3] and allows us to analyze the topology of an extended 2D
unordered ring network. From this raft, J. F. Shackelford et al. derived
a lognormal probability distribution of the ring sizes, which they postu-
lated as being “an inherent feature of the connectivity requirements of
the two-dimensional random network structure” [3].

Similar ring neighborhoods can also be observed in natural macro-
scopic networks and have garnered attention for roughly a hundred
years [4]. For example, ephitelia (surface tissue) of plants and animals
were compared as macroscopic examples of polygonal networks with-
out long-range order [5]. A general tendency of many-sided rings to
have few-sided neighbors, and vice versa was pointed out already by
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Fig. 1. Schematic representation of a two-dimensional amorphous silica network defining different building blocks: (a) single ring: each vertex or corner is the position of a silicon atom;
(b) triplet: three rings sharing a silicon atom; (c) one central ring and all neighboring rings that share an edge.
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F. Lewis [5]. It was D. A. Aboav, however, who first tried to describe this
preferred arrangement quantitatively, albeit using empirically achieved
factors, in what is now known as the Aboav–Weaire law [6].

Recently, real space data were presented on a continuous random
network with the use of modern scanning tunneling microscopy
(STM) [7] and corroborated independently with transmission electron
microscopy (TEM) [8]. In both cases, an ultrathin SiO2-film was pre-
pared on an atomically flat surface. The film consists of just two atomic
layers which are structurally identical and connected via perpendicular
oxygen bridges. The layers are comprised of rings of different sizes,
yielding random structures in the x,y-plane (image plane). This is a
two-dimensional random network of SiO2. Since W. H. Zachariasen
chose a two-dimensional representation for his postulates, the resem-
blance to the experimental results is very striking. For relating the
two-dimensional model system to three-dimensional materials, pair
distance histograms (PDHs) are useful. For bulk materials, PDHs can
be derived from diffraction experiments, whereas atomically resolved
images allow directmeasurement of interatomic distances. A histogram
of all atom pair distances for the SiO2 bilayer system shows two sharp
peaks for the tetrahedral building unit, followed by increasingly broad
peaks for next neighbor distances. Complete disorder (meaning con-
stant probability to find another atom) only sets in at larger radial dis-
tances [7]. These features resemble the PDH plots for bulk materials
from neutron diffraction (ND) and X-ray diffraction (XRD) [9,10].

Using the two-dimensional film as a model for amorphous struc-
tures allows us to study larger building units, i.e. rings and clusters of
several rings in real space. We compare the structure of a large image
of an amorphous SiO2 network (403 rings) with a triangle raft (300
rings) in order to establish basic patterns for amorphous networks.
We present quantitative analysis of single ring sizes (marked in
Fig. 1(a)), as well as progressively larger building units, namely the
ring arrangements around each Si atom (Fig. 1(b)) and ring neighbor-
hoods (Fig. 1(c)). Histograms of ring sizes in each of these frameworks
will be presented. We discuss the non-Gaussian distribution of single
ring sizes and Euler's characteristic which can be used to assign a
deforming contribution to each ring size.

Based on single ring size histograms, occurrence probabilities for
each ring size are determined and used for predicting triplet and neigh-
borhood combinations. The predicted uncorrelated combinations are
compared against observed combinations and the influence of geomet-
rical frustration is discussed.We categorize triplet combinations using a
simplified geometric factor that is called the ‘angle error’. For the ring
neighborhoods, the Aboav–Weaire law is applied to predict neighbor-
hoods and compared against observed neighborhoods.

2. Methods and theoretical background

A bilayer SiO2 film was prepared on a Ru(0001) support, according
to the recipe in [11]. STM images were taken using our custom built
STM/AFM-setup [12]. Fig. 2(a) shows atomic resolution of the Si
positions. A closed chain of n vertices formed by Si atoms is called an
n-membered ring (nMR) or a polygon with n vertices (i.e., pentagon,
hexagon etc.). Rings of different sizes are indicated in Fig. 2(b) with dif-
ferent colors. The entire image consists of 403 rings, with ring sizes
ranging from four to nine membered rings. Complete neighborhood
data can be retrieved for 317 rings (also see supplement, Fig. S1). Statis-
tics of ring sizes, ring size combinations and neighborhoodswere count-
ed manually, based on the atomic positions.

The creation of the triangle raft was described in [3,13]. The size of
the loops thus created was limited from four to eight building blocks.
The geometrical distortion of each ringwas also limited. A large triangle
raft of 300 rings was published in [13]. A cutout of this triangle raft is
presented in Fig. 2(c) (full network data in supplement). The triangle
corners correspond to oxygen positions; the center of each triangle cor-
responds to a silicon position. Rings of different sizes are indicated in
Fig. 2(d) with different colors. Complete neighborhood data can be re-
trieved for 237 rings (also see supplement, Fig. S2). Statistical evalua-
tions are provided in comparison with the silica network.

The neighborhood of a 2D network of polygons has been investigat-
ed many times before, be it at natural rock formations like the Giant's
Causeway or the early studies of cell networks with optical microscopy
[5]. D. A. Aboav [6] was the first to suggest an empirical formula for
predicting the average size of neighboring grainsmn, based on the cen-
tral grain's size n. This dependencewas developed in the following years
with different constants empirically found on various systems (a de-
tailed account of this evolution can be found in [14]), and the resulting
Aboav–Weaire law is usually expressed as

mn ¼ 6−að Þ þ 6aþ μ2ð Þ
n

ð1Þ

with the empirical constant a taking different values depending on the
system. Mostly values from 0 to 2 have been suggested, with most rec-
ommendations being close to 1 [15]. Comparative studies on soap foams
[16], metallic glasses [17] and chalcogenide glasses [18] even lead to the
declaration of a = 1.2 as a universal fit factor, expressing “a general
property of naturally occurring nets” [17] as opposed to artificially con-
structed tessellations. Via the system's variance μ2, the ring size distribu-
tion is included in the model (for more information on ring size
distributions' variance μ2, see [19]). Multiplication by n gives

mn � n ¼ n 6−að Þ þ 6aþ μ2ð Þ ð2Þ

This linear dependence can be plotted and evaluated convenient-
ly for different systems. We will use this empirical law to predict ring
neighborhoods and compare this prediction to observed ring
neighborhoods.

Image of Fig. 1


Fig. 2. (a) STM of two-dimensional SiO2 ring network, size: 4 nm× 4 nm, recorded at VS=2V, IT=50pA. Rings of different sizes are arranged to fill the plane. On half of the image, atomic
positions are indicatedwith green (Si) and red (O) spheres, respectively. (b) Dataset from (a), all atomic positions and ring sizes are visualized in individual colors. (c) Cutout of triangle raft
network, published by J. F. Shackelford [13]. An algorithm creates arrays of triangles, corresponding to Zachariasen schematics. (d) Dataset from (c), ring sizes are indicated with colored
ellipsoids.
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3. Results

The tetrahedral SiO4 building unit has been discussed in detail before
[7]. It is identical for crystalline and amorphous SiO2. Only the combina-
tion of two ormore tetrahedra leads to structures that allowdiscrimina-
tion between amorphous and crystalline. The different structures are
explained by a fixed bridging angle in the crystal and the flexible
Fig. 3. (a) Ring size distribution of an amorphous SiO2 network (317 rings, partly shown in Fig
Fig. 2(c)). The bars in each histogram are labeled with the according ring size. Red/black dash
sizes. Red circles correspond to SiO2, black triangles correspond to the triangle network. Both d
angle in the amorphous material [20]. Another prominent feature of
the amorphous network is the presence of differently sized rings that
fill the plane. Due to their irregular shapes, they amount to broad,
hard-to-interpret features in diffraction based, averaging experiments
like XRD. Real space information, however, now enables us to investi-
gate the network of rings, just like a light microscope enables the
study of cell networks in plant tissue. For the silica film and the triangle
. 2(a)). (b) Ring size distribution of Shackelford's triangle raft (237 rings, partly shown in
ed curves indicate a lognormal fitting function. (c) Lognormal probability plot of the ring
istributions exhibit a linear behavior when plotted in this way.

Image of Fig. 2
Image of Fig. 3
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raft investigated in this study, ring size histograms are shown in
Fig. 3(a) and (b), respectively. In the two-dimensional silica film, the
ring sizes rangemostly from four to nine, whereas the sizes in the trian-
gle raft were limited by the algorithm from four to eight. In both sys-
tems, the five-membered rings are more abundant than the seven-
membered rings, while the eightmembered-rings occurmore frequent-
ly than the four-membered rings. This order is in qualitative agreement
with the relative energies of the isolated silica double rings calculated by
DFT [7].

It is a general tendency observed throughout many different silica
images, that the ring size distribution does not follow a Gaussian distri-
bution, but appears to be asymmetricwith respect to themost abundant
species, which is the six-membered ring. This distribution can be de-
scribed byusing a log-normal distribution function,which exhibits a lin-
ear behavior in a log-normal probability plot (Fig. 3(c)). It was shown
before, that two-dimensional networks, which (i) are amorphous and
(ii) have a narrow range of bond distances between the tetrahedral
blocks, generally show a lognormal distributions of their ring sizes as
an inherent structural property [19].

The combination of three rings that share one Si atom will now be
investigated (compare Fig. 1(b)). Using the individual probabilities for
each ring size derived from Fig. 3, a combined occurrence probability
Fig. 4.Ring triplet occurrence. Statistically predicted occurrence of ring triplet combinations (col
network (b). All combinations that actually occur are shown in ascending order of occurrence. T
in each combination.
for each triplet combination can be predicted. The probability of each
triplet combination simply equals the product of the single ring proba-
bilities, with a factormultiplier accounting for different possible permu-
tations of klm combinations where k ≠ l ≠ m, k = l ≠ m or k = l = m,
respectively (details in the supplement). The uncorrelated expectation
for each possible triplet is set against the real count (in black bars), cor-
responding to the triplet combinations that are observed in the STM
image of the SiO2 bilayer (Fig. 4(a)) and the Shackelford raft
(Fig. 4(b)). All observed combinations are plotted from left to right in
ascending order of the prevalence of real counts. Only complete triplets
were counted for this statistic, omitting silicon atoms at the edge of the
image.

The “expected counts” are normalized for the size of the ring
network and plotted in Fig. 4(a) for the SiO2 network, and
Fig. 4(b) for the triangle raft. However, they represent merely a
statistical consideration, assuming that all rings present in the
network can randomly (meaning without correlation) arrange to
tile the plane. Yet, the fact that neither gaps nor overlaps are
observed in the plane, indicates that a geometric condition also
needs to be met for the arrangement of rings. The rings sharing an
atom must fill out the plane entirely, the sum of their inner angles
covering 360°. When we calculate the difference between 360° and
ored bars) versus observed combinations (black bars) for SiO2 network (a) and Shackelford
he color of the predicted occurrence corresponds to themagnitude of absolute angle error

Image of Fig. 4
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the sum of inner angles assuming ideal polyhedra, we can assign an
“angle error”

Δklm ¼ j360�− α þ β þ γð Þj ð3Þ

to each triplet combination of ring sizes k, l andmwith ideal internal
angles of α, ß and γ. Δklm theoretically can take values from 0° (for
the combination of three six-membered rings) to 90° (for the combi-
nation of three four-membered rings). The bars for the expected
count are marked in different colors representing the absolute
value |Δklm | in four increments for no or little angle error (green
bars), medium angle error (yellow), and higher angle error (orange
and red bars). The largest absolute angle error observed is 30° (33°
in case of the triangle raft), with the most strained ring combination
being a 688-triplet. Combinations with larger Δklm are not observed,
even if they possess high statistical probability. The implication of
this angle error will be addressed further in the Discussion section.

In order to examine the Aboav–Weaire law discussed in the literature,
we determined the rings occurring in the neighborhood of four-
membered rings, five-membered rings etc. We define ring neighbors as
two rings sharing two Si atoms, or an edge. The results are shown in
Fig. 5 for the silica network and in Fig. 6 for the Shackelford network.
For each central ring size, a separate histogram (black bars) shows the
ring sizes that share an edgewith the central ring. The rings at the border
of each network were not counted as central rings, but only as neighbors
to inner rings [also see Fig. S1 in supplement]. This can be first compared
to the predicted random neighborhood, which has been created from the
individual ring statistics, assuming an uncorrelated system. From this
assumption follows, that on average all rings will have the same
neighborhood. This distribution of neighbors is derived from the single
Fig. 5. Ring neighborhood evaluation for SiO2. (a) histograms of rings surrounding 4MR, gray bar
averaged for all 4MR. A blue arrow (“AW”) indicates the predictedmean for the neighborhood o
(c), 7MR (d), 8MR (e) and 9MR (f).
ring distribution by scaling for the amount of edges at each ring (each
ring of size n possesses n edges). All kn rings of size n together have kn·n
ring neighbors and their size distribution is proportional to the previously
determined neighbor distribution. This random neighbor distribution is
indicated in Figs. 5 and 6 in gray bars.

Next to each histogram pair, the angle error Δcorner is indicated. It is
calculated according to Eq. (3) for each Si atom of the central ring,
then averaged for all atoms. We give the distributions of these values
in the supplement, and provide the mean value here in the respective
graph. In this case, the sign of each angle value was preserved, however,
to express how the bond angles in this arrangement typically have to
bend to accommodate smaller or larger angles, respectively. The results
are in agreement with the intuitive understanding of polygons filling
the two-dimensional space. In case of small central rings (four-membered
or five-membered), the bond angles at each silicon atom have to stretch
wider with respect to each polygon's ideal internal angle in order to fill
the plane. In case of central rings larger than six-membered, a positive
angle error is calculated, which corresponds to the polygon internal an-
gles being compressed (with respect to the symmetric polyhedron) to
fit into the plane.
4. Discussion

We have quantitatively analyzed the building blocks of two amor-
phous network structures at increasing length scales: first single rings,
then triplets of rings and, finally, the complete neighborhood around
each ring. Different laws have been suggested about the formation of
these structures. Our real space data enable us to investigate the forma-
tion principles for amorphous networks.
s for prediction, black bars for real count.Δcorner denotes themean value for the angle error,
f 4MR according to theAboav–Weaire law. The same quantities are given for 5MR (b), 6MR

Image of Fig. 5


Fig. 6. Ring neighborhood evaluation for Shackelford's network. (a) histograms of rings surrounding 4MR, gray bars for prediction, black bars for real count.Δcorner denotes themean value
for the angle error, averaged for all 4MR.A blue arrow(“AW”) indicates thepredictedmean for theneighborhoodof 4MR according to theAboav-Weaire law. The samequantities are given
for 5MR (b), 6MR (c), 7MR (d) and 8MR (e).
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Starting conceptually from an ordered two-dimensional network of
hexagons, we can determine the structural influence of rings that deviate
from n = 6. In accordance with the Euler characteristic connecting an
object's faces, edges and vertices, a network filling a two-dimensional
flat plane needs to have zero overall curvature. Despite the asymmetric
ring size distributions shown in the ring size histograms (Fig. 3(a) and
(b)), the combined structural influences from small and large rings com-
pensate one another. A five-membered ring introduces a certain curva-
ture, which is exactly counterbalanced by the curvature resulting from a
seven-membered ring. The structural modification from a four-
membered ring is balanced by an eight-membered ring (or two seven-
membered rings) and so on. Discussing ring size influence on a graphene
sheet, T. W. Ebbesen [21] derived from Euler's expression a simple sum
rule

X
6−nð Þkn ¼ 0 ð4Þ

which expresses the overall curvature in the system and can be
employed for our 2D networks as well. Here, kn is the number of all
rings of size n. An ideal flat structure will achieve Σ= 0, since any cur-
vature induced by one building block is balanced by another blockwith
opposite curvature. The silica film presented here yields a sum of
ΣSilica =−6, the Shackelford network yields ΣShackelford = 0. The devia-
tion from 0 in the case of the silica network must be interpreted as a
sampling size effect, as the deviation per ring steadily decreaseswith in-
creasing number of rings considered.

Instead of condensing the structural influence of all rings into one
number, we now look at individual clusters of rings to identify the char-
acteristics of these network structures better. From comparing the oc-
currence of triplets (Fig. 4) and ring neighborhoods (Figs. 5 + 6) with
the prediction based purely on random arrangements of individual
rings, it is quite clear that the 2D amorphous network structure is not
an uncorrelated system. Closer scrutiny of ring triplets can give an indi-
cation of the driving forces for this system.

We have predicted a statistical probability for each triplet combina-
tion (expected counts: color coded bars) and compared them to the
data (real counts: black bars) from our image in Fig. 4. This very simple
model correctly predicts the combinations 567, 667, 566, 568 and 666 to
occur significantly more than all other combinations. We focus more
strongly on these combinations for measuring the success of the uncor-
related prediction, since they together make up 66% of all combinations
(58% for the triangle raft). Therefore, a good statistical base is provided
for those combinations. However, the random model also predicts the
combination 556 to occur much more frequently than it actually does,
in fact it is predicted to be the third-most-likely combination. For both
the silica and the Shackelford systemwe observe this trend. Also, within
the group of the five most probable combinations, the random model
will not predict their order correctly.

These limitations indicate that the amorphous networks are in some
way correlated, rather than completely random in their arrangement.
We can begin to understand this discrepancy by introducing a geomet-
rical consideration into our model. This is done by estimating the angle
error,Δklm (Eq. (3)), as introduced in the previous section. Analyzing the
real versus the expected counts together with the angle error, the com-
binations can be discussed within certain categories. In Fig. 4, the ex-
pected count bars are color coded green for very small (from 0° to
under 10°), yellow for medium (from 10°to under 20°) and in orange
(from 20° to under 30°) and red for larger angle errors (30° to 40°).
Here, we only focus on the absolute value of Δklm, signs and individual
values are provided in the supplement.

Image of Fig. 6


Fig. 7. Aboav–Weaire's law of polygon neighborhoods. Red circles correspond to the
average neighbors observed in the network of silica rings. Black triangles correspond to
the average neighbors observed in Shackelford's triangle network. A linear fit is well
suited to describe both datasets (red line and black dotted line). The fitting parameters
are given in Table 1. The blue line shows the theoretical prediction according to Eq. (2)
with a = 1.2 (suggested universal fit parameter) and μ2 = 0.95 (variance of silica
network).
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This additional parameter gives an indication why certain combi-
nations, such as 567, occur more often than predicted. They are fa-
vored due to their small geometric strain. In fact, all combinations
with angle errors below 12° exhibit larger real counts than the ran-
dom expectation. This holds for both networks, the silica film as
well as for the Shackelford model. From the aforementioned first
five combinations that make up the majority of triplets, only the
combination 566 possesses an angle error larger than 10°, and occurs
in a smaller amount than predicted. For the category of medium
angle error (yellow bars), the random expected counts do not exhibit
a general trend. Instead, some combinations are over- and others
underestimated with respect to real counts. On the other hand, all
the combinations that have an estimated angle error of 22° or more
(N27° for the triangle raft), that is, highly frustrated bond angles,
occur less often than predicted. These are color coded in orange
and red. This can be nicely seen in both network structures especially
for the 556 and 678 combinations.

We find that the angle error is a simple tool that serves to define
regions of strong geometric favorability (low error value) and strong
disfavorability (high error value) where the probability of forming the
respective triplet combinations strongly deviates from an uncorrelated,
randombehavior. A similar trend can be discoveredwhen the Euler sum
according to Eq. (4) is considered for each triplet combination (all
values in supplement, Table S3). A small value indicates that the triplet
is largely flat and any curvature induced by larger rings is balanced by
smaller neighbors. For all triplet combinations which occur more than
10 times, this local Euler sum has an absolute value of 2 or smaller,
while the maximal value for an observed combination is 4, and the hy-
pothetical maximum is 9. This indicates that the combinations with
small absolute local Euler sum are less strained in terms of the flat 2D
character of the system. Further analysis is needed to uncover additional
parameters and develop a predictive model for the formation of triplet
building units.

Moving from ring triplets to the next larger building unit, namely the
ring neighborhood (compare Fig. 1(c)), we can use similar tools to ana-
lyze the formation principles of our network. Fig. 5 shows the neighbor-
hoods for each ring size in the silica film, Fig. 6 for the triangle raft. The
prediction (gray bars) represents the entire ring edge distribution,
scaled for the share of edges that each ring size possesses. Analogous
to the model previously used for the triplet combinations, this predic-
tion assumes that rings arrange randomly on the plane without other
factors than occurrence probability influencing these arrangements. In
comparing the prediction to the observed neighborhoods (black bars),
we find that other factors do seem to influence the arrangements. The
general tendency of few-sided polygons to preferably have many-
sided neighbors is observed in both the silica and the triangle raft. The
mean value for surrounding rings of each observed ring neighborhood
decreases as the central ring size increases. The opposite is true for the
mean angle error. The angle error is determined according to Eq. (3)
for each Si atom involved in the central ring. A mean value Δcorner is in-
dicated in each histogram, representing the averaged Δklm for all Si
atoms involved in the respective central ring size. A small central ring
typically exhibits negative angle errors, meaning the bond angles need
to expand from their ideal internal angles to fill the plane. When the
central ring is larger, the bond angles, on average, are contracted in-
stead, which is expressed by a positive angle error Δcorner .

The polygon neighborhood has been previously investigated for
macroscopic networks and is generally described with the empirically
found Aboav–Weaire law. This relation was originally developed to de-
scribemacroscopic systems like cell networks in plant tissue; it is there-
fore intriguing to apply it to an atomically amorphous system in which
building blocks are determined by rigid interatomic bond lengths and
angles. The Aboav–Weaire law predicts an average neighbor size mn

for each ring size n. Besides the network's variance μ2, this model only
uses a fitting factor a. The predicted mean neighbor sizes are indicated
for the silica network in Fig. 5 and for the triangle raft in Fig. 6, respec-
tively. The real space ring neighborhood information gathered from
our imaging technique allows reviewing the validity of this general
law for the case of atomically defined amorphous networks, since we
can determine the actual average neighbor size.

In order to highlight how well the Aboav–Weaire law holds for the
two investigated networks, we use its linear expression which was de-
rived in Eq. (2). Fig. 7 shows the observed ring neighborhoods of the sil-
ica network and the Shackelford triangle network; (mn ∙n) is plotted
against n. Red data points represent the experimentally determined av-
erage neighbor size mn for each central ring size n in the silica film. An
error bar on each data point gives the standard deviation of the distribu-
tion of neighbor rings. A red curve represents the linear fit to the data.
For the triangle raft, the analogous data are plotted in black. The blue
curve shows the Aboav–Weaire prediction according to Eq. (2), with
the value 1.2 chosen for a (declared to hold in general for naturally oc-
curring networks [17]) and μ2 = 0.95 (variance value of the silica net-
work). In the case of the triangle raft, an analogous Aboav–Weaire
prediction only differs through the variance μ2 and results in a parallel
linewith a slight offset. It is therefore not shown in Fig. 7 to improve leg-
ibility. It is striking that the prediction of a linear dependence holds for
both systems investigated. Both the silica and the triangle network can
be fitted with a linear function according to Eq. (2), from which the
fitting parameters a and μ2 can subsequently be derived (see Table 1).
In both cases the μ2 value calculated from the ring statistics and the μ2
value derived from theneighborhoodfit are in good agreement. Howev-
er, the fitting values for a deviate significantly from 1.2, whichmight be
a characteristic for networks governed by rigid interatomic bond
lengths. With real space data from more covalent networks, a general
framework for the Aboav–Weaire law including a better physical
assignment for the parameter a may be obtained in the future.

5. Conclusion

We have investigated the network structure of twomodels of amor-
phous silica, an experimental bilayer of SiO2 on a Ru(0001) support and
a simulated triangle network. Real space data provide an insight into

Image of Fig. 7


Table 1
Fitting parameters μ2 and a for silica bilayer and triangle raft, in comparison with real var-
iance μ2.

System μ2 (real space data) μ2 from fit (Fig. 7) a from fit (Fig. 7)

Silica bilayer 0.95 0.97 ± 0.01 1.94 ± 0.05
Triangle raft 1.08 1.13 ± 0.01 1.72 ± 0.07
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building units beyond the tetrahedral SiO4-block. Using this data,we re-
view the established description of silica glasses as continuous random
networks. To this end, we have studied single rings, ring triplets and
ring neighborhoods. The distributions of ring sizes follow a log-normal
distribution for both systems. Ring sizes smaller than six introduce a dis-
tortion into the system which is balanced by larger rings. This property
can be captured in Euler's characteristic. Larger building units have been
investigated to learn more about the factors influencing ring arrange-
ments in amorphous structures. Ring triplets sharing one Si atom have
been studied in comparisonwith a randommodel, assuming no correla-
tion. Adding the angle error as a geometric factor to this model helps to
understand why some combinations are geometrically favorable and
therefore underestimated by the randommodel and vice versa. Howev-
er, more theoretical investigations are needed in order to develop a pre-
dictive model for the formation of extended network structures.

While the angle error relies on a simplified geometric model, it is a
quick means to show that formation of ring neighborhoods is likewise
not an uncorrelated process, but influenced by geometry. Strain or in-
duced curvature can be balanced by a neighboring building block of op-
posite structural influence. Further investigations are needed to
elucidate how geometrical strain is alleviated through progressively
larger building units. Typical building blocks of medium range may be
identified, through which the energy of the system is minimized. The
observed average size of neighboring rings was compared against the
prediction from Aboav-Weaire's law, revealing that the universally as-
sumed linear relationship of mn ∙n vs n seems to hold not only for mac-
roscopic cell networks, but also for an amorphous network made up of
covalent bonds.
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