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Direct deposition of graphene nanowalls on ceramic powders
for the fabrication of a ceramic matrix composite∗

Hai-Tao Zhou(周海涛)1, Da-Bo Liu(刘大博)1, Fei Luo(罗飞)1, Ye Tian(田野)1, Dong-Sheng Chen(陈冬生)1,
Bing-Wei Luo(罗炳威)1,†, Zhang Zhou(周璋)2, and Cheng-Min Shen(申承民)2,‡

1Beijing Institute of Aeronautical Materials, Aero Engine Corporation of China, Beijing 100095, China
2Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 28 March 2019; revised manuscript received 3 April 2019; published online 8 May 2019)

Uniform mixing of ceramic powder and graphene is of great importance for producing ceramic matrix composite. In
this study, graphene nanowalls (GNWs) are directly deposited on the surface of Al2O3 and Si3N4 powders using chemical
vapor deposition system to realize the uniform mixing. The morphology and the initial stage of the growth process are
investigated. It is found that the graphitic base layer is initially formed parallel to the powder surface and is followed by
the growth of graphene nanowalls perpendicular to the surface. Moreover, the lateral length of the graphene sheet could be
well controlled by tuning the growth temperature. GNWs/Al2O3 powder is consolidated by using sparking plasma sintering
method and several physical properties are measured. Owing to the addition of GNWs, the electrical conductivity of the
bulk alumina is significantly increased.

Keywords: graphene, ceramic matrix composite, chemical vapor deposition

PACS: 81.05.ue, 81.05.Mh, 81.15.Gh DOI: 10.1088/1674-1056/28/6/068102

1. Introduction
Monolithic ceramics are widely used in the materials

industry, including wear-resistance parts, electronics, and
various coatings. However, their applications are signifi-
cantly limited by the brittleness and poor electrical conduc-
tance. To overcome these drawbacks, ceramic composites
have been developed by incorporating nanofillers into the ce-
ramic matrices.[1–6] Recently, graphene has been widely in-
vestigated as a good filler for producing highly tough and stiff
ceramic matrix composite (CMC).[7–15] According to the pa-
pers reported in this field, the main challenges have been to
produce high quality graphene and realize good dispersion of
graphene in ceramic matrix. In these studies, ball-milling[7–12]

and colloidal processing[13–15] were two mainly used mixing
methods. Ball-milling technique imposed heavy shear forces
on graphene to break its agglomeration and promote its dis-
persion. Colloidal processing produced well dispersed mix-
ture usually by adding graphene oxide (GO) dropwise into ce-
ramic suspension under magnetic stirring. However, the se-
vere collision in ball-milling and the oxidation treatment in
preparing GO by hummer’s method would all significantly
damage the graphene flakes and give rise to massive structural
defects,[16,17] which degraded the physical properties in con-
trast with pure graphene. To produce high quality CMC, it is
necessary to develop a new method to realize better control of

the quality of graphene, as well as uniform mixing.
Recent years have witnessed great progress in the

growth of graphene nanowalls (GNWs) on arbitrary sub-
strates by employing plasma-enhanced chemical vapor deposi-
tion (PECVD) technique.[18–23] This method enables the low-
temperature and uniform synthesis of graphene nanosheets
owing to the presence of reactive species generated in the
plasma region, and the GNWs have been widely used in the as-
pects of solar cells, supercapacitor, and field emission.[19,20,22]

In this study, we aim to utilize PECVD to directly deposit
graphene on the surface of ceramic powder, and the morphol-
ogy and the initial stage of growth process of GNWs have been
investigated.

2. Experimental procedure
2.1. Growth of GNWs on the ceramic powder

The α -alumina powder (Xilong Scientific Ltd.) with a
purity of 99.85% and an average particle size of 50 µm was
studied. GNWs were deposited in a remote radio-frequency
(RF) PECVD system. Thin powder layer was flatly laid in the
bottom of the crucible and then transferred into the quartz tube
furnace. Prior to deposition, the furnace was pumped down to
a pressure of 5× 10−1 Pa, then the temperature was raised to
600 ◦C or 700 ◦C at a rate of 20 ◦C /min under the protec-
tion of Ar flow of 150 standard cubic centimeters per minute

∗Project supported by the National Natural Science Foundation of China (Grant Nos. 51602300 and 51602299) and the National Key Research and Development
Program of China (Grant No. 2018FYA0305800).

†Corresponding author. E-mail: luobingwei@126.com
‡Corresponding author. E-mail: cmshen@iphy.ac.cn
© 2019 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn
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(sccm). Thereafter, CH4 flow (20 sccm) was introduced into
the furnace and 290 W RF was generated simultaneously. Af-
ter the deposition, the RF and CH4 flow were turned off and
the ceramic powder was naturally cooled down to room tem-
perature.

2.2. Spark plasma sintering (SPS)

Bulk ceramic composite was fabricated using an SPS-
1050 T apparatus. The powder was loaded in a cylindrical
graphite die with an inner diameter of 40 mm. Two graphite
plungers were used to seal the die on both ends. The sintering
process was carried out under a vacuum of 5 Pa and a uni-
axial pressure of 4 MPa was applied. Samples were heated
to 1450 ◦C at a rate of 10 ◦C/min. The dwelling time was 5
minutes.

2.3. Characterizations

The microstructure of the powder was characterized by
scanning electron microscope (SEM, Hitachi S-4800) and high
resolution transmission electron microscope (HRTEM, FEI
Tecai G2F20). Raman spectrum was recorded on the Horiba
Jobin Yvon LabRAM HR-800 with a laser wavelength of
532 nm and an incident power of 1 mW. The x-ray photoelec-
tron spectroscopy (XPS) analysis was carried out on Thermo

escalab 250XI, using monochromatized Al Kα radiation at
150 W. The high resolution XPS spectra were recorded in
the constant analyzer energy (CAE) mode with a pass en-
ergy of 20 eV and a step size of 0.1 eV. The density values
were measured using the Archimedes method. Vecker hard-
ness tests were carried out on the Future-Tech with a 100-
g force. Keysight 2902A was used to measure the conduc-
tivity at 25 ◦C on a small piece of sample with a size of
8 mm×8 mm×0.5 mm.

3. Results and discussion

Figure 1(a) shows a schematic illustration of the remote
PECVD system, in which the RF helical-coil is mounted at
the upstream side and could dissociate the methane gas into
various active radicals. Owing to these radicals, the growth of
GNWs does not depend on the catalytic decomposition of the
precursor by the metallic substrate and could be realized on al-
most arbitrary substrates from metal to insulator, such as cop-
per, silicon, and glass.[22,24,25] Figure 1(b) shows a comparison
photograph, from which we could clearly find that the alumina
(Al2O3) powder completely turns black after the GNWs de-
position of 90 min. Raman spectrum in Fig. 1(c) verifies the
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Fig. 1. (a) Schematic illustration of PECVD system. (b) Photographs of Al2O3 powder before (left) and after (right) GNWs deposition.
(c) Raman spectrum. (d) XPS of GNWs/Al2O3 powder. (e) Low-magnification SEM image showing overall view of Al2O3 particles. (f)
High-magnification image showing GNWs on the particle. Graphene deposition parameter: 700 ◦C, 290 W, 90 min.

068102-2



Chin. Phys. B Vol. 28, No. 6 (2019) 068102

formation of GNWs and presents three intrinsic peaks located
at 1353 cm−1, 1590 cm−1, and 2697 cm−1, corresponding to
D band, G band, and 2D band of grapheme, respectively.[26,27]

XPS analysis is used to study the chemical composition of the
GNWs. Figure 1(d) is a representative spectrum, showing a
strong C 1s peak at 284.8 eV and a small O 1s peak at 532.5 eV.
No other elements are detected in the GNWs except for some
oxygen adsorbates. The existence of these oxygen adsorbates
is due to the physical and/or chemical adsorption of oxygen
when the sample is exposed to ambient conditions.

The large-scale SEM image in Fig. 1(e) is an overall
view of a single alumina particle. The particle has a size of
∼ 50 µm and consists of numerous alumina pieces. The mor-
phology and structure of the GNWs-capping on the alumina
particle are analyzed by the SEM and HRTEM techniques.
From the higher-magnification SEM image (Fig. 1(f)), GNWs
could be clearly identified, showing a curled-sheet feature and
an average length of ∼ 70 nm. According to the previous re-
port, GNWs are composed of two kinds of structures, named
stem- and branch-structures.[23] The graphene sheets visible
in Fig. 1(f) are referred to as stem. As shown in Fig. 2(a),
we could see the branches at much higher magnification, in
which several stem- and branch- structures are labeled by the
solid and dashed arrows, respectively. The branches are much
smaller and dimmer compared with the stems. To further un-
derstand the structure of GNWs,TEM is harnessed to study
the morphology. Figure 2(b) shows a typical TEM image of
a single sheet of GNWs. Dense branches with the size of
several nanometers could be clearly identified, and three of
them are labeled by arrows to guide the eye. HRTEM im-
ages could be used to identify the graphene layers. The im-
age (Fig. 2(c)) obtained at the edge of stem-structure indi-
cates that this stem is terminated with two-layer graphene.
The interlayer spacing between two neighboring monolayer
is about 0.37 nm. This value is slightly larger than that of
graphite, which is most likely due to the reduced interactions
between graphene layers.[19] Figure 2(d) shows an HRTEM
image recorded in the zone of branches, from which we could
find that the branches are composed of various graphene layers
with an average interlayer spacing of 0.374 nm. These results
imply that the GNWs films correspond to few-layer graphene.

Many efforts have been made to investigate the growth
mechanism of GNWs on metallic substrates, such as Cu, Ni,
and Pt.[22,23,28] Most of these studies indicated that the growth
of GNWs was composed of two stages: initially, the carbon
radicals nucleated and massive graphene layers in parallel with
substrate took form, following a two-dimensional (2D) growth
mode; as the number of layers increased and the strain en-
ergy accumulated, 2D layers became energetically unfavorable

and a transition to three-dimensional (3D) growth took place.
However, few work reported the growth mechanism on the sur-
face of ceramics. To elucidate this issue, the growth process
of GNWs is monitored by gradually varying the growth time
under otherwise the same condition. Before graphene deposi-
tion, the surface of alumina particle has a clean and smooth
topography, as shown in the SEM image of Fig. 3(a). Af-
ter 10 min deposition (Fig. 3(b)), graphene sheets with wrin-
kle structures could be clearly identified. At this stage, these
sheets are still lying down on the substrate. When the depo-
sition time is elongated to 20 min (Fig. 3(c)), the transition to
3D growth occurs and some graphene sheets stand up at the
substrate, as labeled by solid arrows. The above observations
prove that the growth of GNWs on ceramic surface also com-
plies well with the two-stage mode. According to this mode,
we could control the lateral width of the graphene sheets by
changing the growth temperature.[22] As shown in Figs. 3(d)
and 3(e), at a growth temperature of 700 ◦C, all the sheets of
GNWs present similar width of 70 nm; in contrast, the width
increases to 150 nm at 600 ◦C. In ball-milling and colloidal
methods, the size of graphene flakes is incontrollable. Thus,
no work so far has reported the effect of the size distribution of
graphene sheets on the properties of CMC. In our experiment,
the size of graphene sheets is uniform at a given growth tem-
perature and is adjustable by changing the temperature, which
makes the study of size effect feasible.

0.37 nm

2 nm

200 nm

5 nm

1.87 nm

(b)

(c) (d)

~ 10 layers

~ 4 layers

~ 6 layers

100 nm

(a)

Fig. 2. (a) High-magnification SEM image showing abundant of stem- (solid
arrows) and branch- (dashed arrows) structures. (b) TEM image of branches
(labeled by arrows) on the stem. (c) HRTEM image at the edge of the stem,
indicating the stem is terminated with two-layer graphene with an interlayer
spacing of 0.37 nm. (d) HRTEM image at the branches, showing the branches
are composed of various graphene layers with an average interlayer spacing
of 1.87/5 = 0.374 nm.
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Fig. 3. (a) High-magnification SEM image of bare Al2O3 powder. (b) Image after 10-min deposition showing 2D graphene layers. (c) Image after
20-min deposition showing the transition to 3D graphene layers. (d) and (e) Graphene sheets showing variable lateral lengths at different growth
temperatures. (f) High-resolution XPS spectra recorded after different deposition times. Graphene deposition parameters are: (b)–(d) 700 ◦C, 290 W;
(e) 600 ◦C, 290 W.

XPS measurements are also carried out to detect the
growth process of GNWs. Before deposition, the bare Al2O3

powder is treated at ambient atmosphere at 800 ◦C for three
hours. Our results indicate that the content of residual
amorphous carbon significantly decreases from 12.3 at.% to
7.1 at.% after this treatment. The high-resolution C 1s spec-
tra recorded at different deposition times are presented in
Fig. 3(f). The amorphous carbon on bare Al2O3 powder shows
a broad C 1s peak and a maximum at 284.68 eV. The peak
recorded after 1-min deposition is obviously different, which
is located at 284.79 eV and shows a characteristic shape of
C 1s spectrum of graphitic carbon. This peak could be fitted
with two peaks at 284.8 eV and 285.5 eV, corresponding to
graphitic carbon and C–O bond, respectively. The existence
of C–O bond might be due to the fact that the carbon radi-
cals partially reduce the Al2O3 surface and the Al–O–C bonds
form.[29] There is almost no change in the shape of C 1s when
the deposition time is elongated to 3 min. The carbon con-
centrations measured on the powder surface are 34 at.% and
48 at.% after 1-min and 3-min depositions, respectively.

To elucidate the universality and advantage of our
method, we further deposit GNWs on the surface of silicon
nitride (Si3N4). As shown in the SEM image of Fig. 4(a), the
Si3N4 powder shows a particle size of below 3 µm. At higher
magnification, graphene sheets could be identified with an av-
erage length of 70 nm and 150 nm at the growth temperature
of 700 ◦C (Fig. 4(b)) and 600 ◦C (Fig. 4(c)), respectively. The

Raman spectrum in Fig. 4(d) presents three peaks located at
1350 cm−1 (D), 1586 cm−1 (G), and 2702 cm−1 (2D), further
verifying the formation of GNWs. The results are similar to
these on alumina powder, indicating that the growth of GNWs
is independent on the type of ceramic powder and could be
further extended to other powders such as SiC, SiO2, and mul-
lite.
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Fig. 4. (a) Low-magnification SEM image showing overall view of Si3N4
particles. (b) and (c) High-magnification image of GNWs on the particle,
showing variable lateral lengths at different growth temperatures. (d) Raman
spectrum. Graphene deposition parameters are: (b) 700 ◦C, 290 W, 90 min;
(c) 600 ◦C, 290 W, 90 min.

The GNWs-Al2O3 powder is sintered by SPS method to
fabricate alumina composite. The volume percent of graphene
in this sample is about 0.25%. Pure Al2O3 powder is also
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sintered to bulk monilithic alumina using the same condi-
tion for comparison. The composite has a black color, ex-
hibiting a sharp contrast with the white monolithic alumina.
Graphene owns exceptional high electrical conductivity and is
considered to be an ideal additive to improve this property of
ceramic.[7,16,30] We carry out measurements on several physi-
cal properties such as bulk density, Vickers hardness, and elec-
trical conductivity. The monilithic alumina and the composite
exhibit similar bulk density with the value of 3.899 g/cm3 and
3.918 g/cm3, respectively. These numbers are very close to the
ideal value of alumina (3.97 g/cm3), indicating that the sinter-
ing parameters used in our experiment are suitable. There are
little differences in hardness between the two samples, with
the value of 1667 HV and 1652 HV, respectively. However,
the addition of graphene could significantly raise the electri-
cal conductivity of alumina. Our experiment results show that
the monilithic Al2O3 is an insulator. The graphene sheets in
the composite provide numerous conductive paths and sharply
increase the electrical conductivity to a value of 0.724 S/m.

4. Conclusion and perspectives
GNWs film has been successfully deposited on the sur-

face of Al2O3 and Si3N4 powders. The layers, counted from
HRTEM images, imply that the GNWs correspond to few-
layer graphene. SEM results indicate that the growth process
includes a transition from 2D to 3D mode at the initial stage.
The lateral length of graphene sheets could be well controlled
by changing the deposition temperature, which is about 70 nm
and 150 nm at 700 ◦C and 600 ◦C, respectively. Moreover,
the electrical conductivity of the composite significantly in-
creases compared with the monilithic alumina. Our experi-
ment provides an alternative way to realize the uniform mixing
of graphene and ceramic powders, which has potential appli-
cations in fabricating ceramic matrix composites.
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