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Spin-polarized oxygen evolution reaction under
magnetic field
Xiao Ren1,2, Tianze Wu 1,2,3, Yuanmiao Sun2, Yan Li1, Guoyu Xian1, Xianhu Liu 4, Chengmin Shen1,

Jose Gracia 5, Hong-Jun Gao 1, Haitao Yang 1✉ & Zhichuan J. Xu 2,3,6✉

The oxygen evolution reaction (OER) is the bottleneck that limits the energy efficiency of

water-splitting. The process involves four electrons’ transfer and the generation of triplet

state O2 from singlet state species (OH- or H2O). Recently, explicit spin selection was

described as a possible way to promote OER in alkaline conditions, but the specific spin-

polarized kinetics remains unclear. Here, we report that by using ferromagnetic ordered

catalysts as the spin polarizer for spin selection under a constant magnetic field, the OER can

be enhanced. However, it does not applicable to non-ferromagnetic catalysts. We found that

the spin polarization occurs at the first electron transfer step in OER, where coherent spin

exchange happens between the ferromagnetic catalyst and the adsorbed oxygen species with

fast kinetics, under the principle of spin angular momentum conservation. In the next three

electron transfer steps, as the adsorbed O species adopt fixed spin direction, the OER

electrons need to follow the Hund rule and Pauling exclusion principle, thus to carry out spin

polarization spontaneously and finally lead to the generation of triplet state O2. Here, we

showcase spin-polarized kinetics of oxygen evolution reaction, which gives references in the

understanding and design of spin-dependent catalysts.
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The sluggish kinetics of oxygen evolution reaction (OER) is
a major cause for the low efficiency in techniques, such as
solar water splitting,1 rechargeable metal-air batteries,2

regenerative fuel cells,3 and water electrolysis.4,5 Exploring better
catalysts for OER has become increasingly attractive in recent
years. Non-precious 3d-transition metal oxides (TMOs), such as
Fe-, Co-, and Ni-based oxides, are promising cost-effective
catalysts.6,7 Their catalytical activities are tunable as the diversity
in oxides families affords numerous freedoms to tailor their
physicochemical properties. Sabatier’s principle, which qualita-
tively describes that the optimized catalytic activity when adsor-
bed species bind to the catalytic surface neither too strongly nor
too weakly, led to the fundamental understanding of OER
mechanisms and guided the subsequent design of highly active
catalysts.8,9 This principle was further supported by the findings
that the OER activities of transition metal oxides correlate
strongly with the eg occupancy, which is related to the binding
strength between the metal and the oxygen species.10–12 Some
exceptions have been found not well fitted with the eg theory,
which is partially resulted by the diverse and complicated mag-
netism in TMOs family.13–16 Besides, the produced O2 is in tri-
plet ground state, where the frontier π* orbitals are occupied by
two electrons with parallel alignment. In contrast, the ground
spin state of reactant OH-/H2O is singlet with all paired
electrons.17,18 The singlet states of the oxygen molecule were
reported at an energy level of at least ~1 eV higher than its triplet
state.18,19 Thus, the magnetism of TMOs, related to the spin
polarization, should be influential on the kinetics of OER.20,21 It
is reasonable to consider that the active sites with suitable ther-
modynamic paths for OER should allow a way to facilitate the
spin alignment in the product. As suggested by recent theoretical
studies by J. Gracia,22–24 the spin-polarized electrons in catalysts
promote the generation of parallel spin aligned oxygen by
quantum spin-exchange interactions (QSEI), which further pro-
mote the OER kinetics. Therefore, facilitating the spin polariza-
tion should be an effective strategy for improving OER efficiency.
Ron Naaman and co-works reported that the application of the
chiral-induced spin selectivity effect to product the polarized
electron. This spin polarization transferred is the origin of a more
efficient oxidation process in which oxygen is formed in its triplet
ground state.25–27 It has been pointed out by J. Gracia et al. that
theoretically photosystem II can act as a spin-controlling gate to
govern the charge and spin transport during the OER process,28

which offers a favoured thermodynamic path for O2 evolution.
Besides the extrinsic spin polarizer, the ordered magnetic
moment structure in ferromagnetic materials can create intrinsic
spin filtering for highly spin-polarized electrons. The spin filtering
effect originates from the exchange splitting of the energy levels in
the conduction band of a magnetic insulator.29 Most recently,
José Ramón Galán-Mascarós et al. reported an external magnetic
field, applied by a permanent magnet, enhances the OER activity
of magnetic oxides in alkaline.30 It opens a new strategy to
manipulate the spin polarization in magnetic oxide catalysts for
promoting the OER and encourages more detailed studies to
understand how the magnetic field induced spin polarization
affects the OER process.

In this work, we report an investigation on the key kinetics
change on the ferromagnetic CoFe2O4 catalyst under the mag-
netic field. The ferromagnetic CoFe2O4 catalyst works as a spin
polarizer under the magnetic field. We have found that the spin-
polarized kinetics of OER starts at the first electron transfer step,
where ferromagnetic exchange happens between the ferromag-
netic catalysts and the adsorbed oxygen species (reactants)
under the principle of spin angular momentum conservation.
Without the magnetic field, the Tafel slope of CoFe2O4 is
identical and equal to circa 120 mV/decade, which indicates the

first electron transfer step is rate-determining step (RDS) and no
electron transfer occurring before the RDS. Under the magnetic
field, the Tafel slope decreases to circa 90 mV/decade, indicating
the number of electron transfer is ~0.5 and a mixed RDS
involving the first electron transfer step and second steps. Such a
phenomenon cannot be observed in the catalysts without fer-
romagnetic orderings under the same condition. The results
indicate that the key step of spin-polarized OER is the first
electron transfer step in OER, where the spin-polarized process
via exchange hopping can be facilitated under the magnetic
field. As a consequence, the first electron transfer is no longer
the RDS. After a facilitated spin-polarized ferromagnetic
exchange of electrons, the adsorbed O species will overall settle
on the fixed spin direction. Due to the Hund Rule and Pauli
Exclusion Principle, the follow-up electrons’ transfer needs to
carry out spin polarization spontaneously and finally lead to the
generation of triplet state oxygen. Overall, we showcase the key
kinetics information in OER under a magnetic field, which
influences the micro- and macroscopic spin polarization and
spin transport. This finding will be helpful for further devel-
opment of magnetic field assisted OER-enhancing strategy and
related catalysts.

Results
Magnetic and electrochemical characterizations. We begin with
the discussion of the magnetic properties of the employed cata-
lysts, CoFe2O4, Co3O4, and IrO2. The study will determine the
suitable magnetic field and weather a global aligned magnetic
moment can be achieved. The study of magnetic property reveals
the optimal strength of the applied magnetic field for the align-
ment of the magnetic moment in ferromagnetic CoFe2O4. The
CoFe2O4 and Co3O4 were prepared by a modified solid-state
chemistry method as previously reported.11 X-ray powder dif-
fraction characterization was performed to confirm their crystal
structures. The diffraction patterns match well with the standard
patterns without impurity peak found (Supplementary Fig. 1 and
Supplementary Table 1). As depicted in Fig. 1a, CoFe2O4 gives a
hysteresis loop in an enlarged manner, indicating a room-
temperature ferromagnetic behavior with a saturation magneti-
zation (Ms) of 44 emu·g−1. The Co3O4 and IrO2 samples with
tiny susceptibility (χ) of 3.07 × 10−5 and 0.51 × 10−6, respectively,
at 300 K show antiferromagnetic or paramagnetic behaviors,
respectively. The detailed magnetic data are summarized in
Supplementary Table 1. The cyclic voltammetry (CV) of those
catalysts were then measured with and without a constant mag-
netic field of 10,000 Oe under alkaline condition (see Methods for
details). As shown in Fig. 1b, c, d, the OER performance of the
ferromagnetic CoFe2O4 is promoted obviously under the mag-
netic field while the changes in non-ferromagnetic catalysts
Co3O4 and IrO2 are negligible. When a strong enough magnetic
field (higher than the coercivity) is applied to a ferromagnetic
material, the magnetic moment will (macroscopically) align along
with the direction of the external magnetic field. The ferromag-
netic (long-) ordered material as spin polarizer is an extended
selective spin-filter for electron transfer during catalysis. The
generation process of polarized electrons has been illustrated in
Fig. 1e.

It should be noticed that the use of magnetic fields in water
electrolysis has been studied in the past,31–36 in which the mass
transport in the electrochemical process was found to be affected
by the Lorentzian movement, i.e. the diffusion of regents and the
release of the generated gas bubbles are promoted. However, in
this study, some evidence has excluded such effect from mass
transport as a main contributor to OER enhancement under
the magnetic field. First, the improvement was not observed on
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non-ferromagnetic catalysts Co3O4 and IrO2 with the effect of
Lorentzian movement on mass transport. Second, we also tested
the OER performance of Co(acac)2 and Fe(acac)3 with and
without a constant magnetic field (as shown in Supplementary
Fig. 2). Nearly no difference can be observed. It also should be
noted that OH- and H3O+ in aqueous solution do not move
physically, but by sequential proton transfer, known as Grotthuss
mechanisms37 (Supplementary Fig. 3). That means the influence
of Lorentz force on the physical movement of ions OH− or H3O+

is negligible. Thus, the effect from the mass transport under the
external magnetic field should have little contribution to the
observed OER enhancement of the ferromagnetic CoFe2O4.
Besides, the electrical resistance of magnetic materials can be
affected by the magnetization, which is through the scattering of
electrons on the magnetic lattice of the crystal.38–40 However, the
difference in the conductivity at room temperature under
10,000 Oe is about 3% for insulator CoFe2O4 with 3.86 ×
10−5 S/m,40–42 which does not cause a significant difference in
the electrode’s conductivity. This is because acetylene black
carbon (AB) with 500 S/m as a conductive mediator is mixed with
those oxide catalysts for their application as the electrode,43

which dominants the electron conduction.

No surface restructuration in OER. It is generally recognized
that some Co-based perovskites and spinels undergo operando
surface reconstruction to form active Co (oxy) hydroxides in
alkaline conditions to promote OER.44–46 In our case, there are
no changes in OER performance of CoFe2O4 during CA tests in
1M KOH for 1 h shown in Supplementary Fig. 4, indicating
CoFe2O4 is stable without noticed surface reconstruction during
the OER process. The high-resolution transmission electron
microscope (HRTEM) was further used to rule out the possible
interference from surface reconstruction of catalysts during the
OER. It has been found that the spinel crystal structure of
CoFe2O4 remained after the electrochemical treatment (Supple-
mentary Fig. 5), which is consistent with what has been reported
previously.47 The aberration-corrected STEM provides direct
atomic imaging and confirms that the well-crystalline feature
reserved from the surface to bulk (Fig. 2a, b). The HADDF line
profile shows the same bond length of Co-O in bulk and surface,
which verifies no surface reconstruction (Fig. 2c). Raman tech-
nique was then performed to study the inhomogeneity evolution
in the near-surface region. The Raman spectra of cubic structures
(Fd-3m) CoFe2O4 before and after OER are presented in Fig. 2d.
In the top curve, peak maxima at 603 and 666 cm−1 are due to
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A1g symmetry involving symmetric stretching of oxygen atom
with respect to the metal ions in tetrahedral sites. The other low-
frequency phonon modes are due to metal ions involved in
octahedral sites, i.e. Eg and T1g. The assignment of these phonon
modes was carried out in accordance with the literature.48 After
electrochemical treatment (bottom curve), no changes in the
vibrational modes were observed, which proves once again that
there is no surface reconstruction in OER. X-ray photoelectron
spectroscopy (XPS) was also performed to study the surface
chemical states of CoFe2O4 before and after the OER. As shown
in Supplementary Fig. 6, the XPS survey spectra confirm the
coexistence of Co, Fe, and O in the samples. Figure 2e shows

the 2p orbital of Fe, Co, and 1 s orbital of O. The XPS of Fe 2p
core level presents two pairs of peaks: Fe3+ 2p3/2 at about
710.7 eV and 713.2 eV; Fe3+ 2p1/2 at about 724.1 eV and 726.2 eV.
The doublets in samples can be ascribed to Fe3+ in octahedral
sites and Fe3+ in tetrahedral sites, respectively. The two peaks of
Co 2p with the binding energy of 780.1 and 782.0 eV are ascribed
to Co2+ ions in octahedral sites and Co2+ ions in tetrahedral
sites. The main peaks of O 1 s at 529.6 eV are recognized
as oxygen ions, which are all associated with a “−2” formal
charge.49 Compared to the spectra before and after the OER,
these peaks remain unchanged in location, indicating no surface
reconstruction.
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Spin-polarized kinetics of OER. Oxygen evolution reaction is
authenticated a four-step reaction with each step accompanied by
an electron transfer. The Tafel plots are widely regarded as a
generalized kinetics theory for electron transfer reactions. The
Tafel equation presents the relationship between the Tafel slope
and the exchange current density:

η ¼ � 2:303 RT
αF

´ log i0 þ
2:303RT
ðαþ nÞF ´ log i ð1Þ

where the Tafel slope equals to 2.303RT/[(α+ n)F] (i0 is the
exchange current density, R is the universal gas constant, T is the
absolute temperature, F is the Faraday constant, n is the number
of electrons transferred before RDS, and α is the charge transfer
coefficient and usually assumed to be 0.5).50,51 Ideally, the Tafel
slope tells the information of reaction kinetics. For example, the
Tafel slope is 120mV·dec−1, which indicates the first electron
transfer step is the RDS because there is no electron transfer before
the RDS. If the second step is the RDS, the Tafel slope will
decrease to 40mV·dec−1 with an electron transfer number of 1.
The change of the Tafel slope is often reputed as an indication of
the change of reaction mechanism. As shown in Fig. 1f, the Tafel
slope of CoFe2O4 is about 109 ± 4.7mV·dec−1 and that indicates
the first electron transfer from the adsorbed OH− is the RDS
without the magnetic field. But, after applying a constant magnetic
field, the Tafel slope decreases to circa 87.8 ± 5.2 mV·dec−1,
indicating the number of electron transfer is about 0.5 and a
mixed RDS involving the first electron transfer step and second
steps. Furthermore, we have carried out OER measurements of
CoFe2O4, Co3O4, and IrO2 under different temperatures as shown
in Fig. 3a. We first noted that the OER performance of catalysts is
getting better as the reaction temperature increases. This is
probably because that the rate constant of the reaction will
increase as the reaction temperature increases, which can promote
this reaction based on the transition state theory52. More impor-
tantly, the OER performance of the ferromagnetic CoFe2O4 is
promoted under the magnetic field at various temperature.
However, the positive influence of the magnetic field on the OER
performance of CoFe2O4 is decreased as the reaction temperature
increases. The corresponding Tafel slopes are shown in Fig. 3b. At
room temperature, the Tafel slope of CoFe2O4 is about
106mV·dec−1 without the magnetic field. After applying a con-
stant field, the Tafel slope decreases to circa 82.8 mV·dec−1. As the
temperature increases, the positive influence of the magnetic field
became not that remarkable. This is because the arrangement of
magnetic moments of catalyst will be thermally disturbed. The
ferromagnetic ordering in the catalyst gets disturbed and thus a
certain degree of demagnetization at high temperature occurs,
which lead to the decreased influence of the magnetic field on
OER. We also note that the Tafel slope of CoFe2O4 have a slight
favorable change as temperature increases, which maybe because
the interaction between two M-O unites mechanism occurs at
high temperature.53,54 Thus, the key step in spin-polarized OER is
the first electron transfer step in FM CoFe2O4, where the adsorbed
OH− is difficult to deprotonate and transfer the electron. How-
ever, the change of Tafel slopes was not observed in the non-
ferromagnetic catalysts under the same condition.

The electron transfer at the catalytic interface depends on the
transition probability, which is associated with the wavefunction
integral between OH− and the active site. As revealed by our
previous work, the octahedral sites are mainly responsible to the
OER55. The extended X-ray absorption fine structure (EXAFS)
showed the perfect inverse spinel structure of CoFe2O4 (Supple-
mentary Fig. 7). The Fe3+ ions distribute equally in octahedral
and tetrahedral sites and Co2+ ions distribute in octahedral sites.
We further calculated the effective magnetic moment (μeff ) of

CoFe2O4 to be about 3.44 μB by Curie−Weiss fitting (Supple-
mentary Fig. 8). The μeff for CoFe2O4 is very close to the idea value
of the inverse spinel.56 Thus, the Co2+ ions in octahedral sites
contribute to the effective ferromagnetic moment. Those results
are consistent in previous experimental work.57 Considering that
only Co in octahedral sites contribute the effective magnetic
moment, the magnetic field enhanced OER should mainly happen
on the Co sites. Thus, we studied the Co sites as the active sites in
this work. For a ferromagnetic (FM) catalyst, the orbitals of the
FM oxides create an intrinsically degenerate spin-polarized
metallic state that optimizes the wavefunction based on the
inter-atomic reduction of the electron–electron repulsion. DFT
calculations were performed to explore the diffierent elctron
structure of CoFe2O4 under an applied magnetic field (The
computational details are shown in the Supplementary Informa-
tion). As shown in the projected density of states (PDOS) of
CoFe2O4 (Fig. 4a), there is more overlap between the line of M-3d
and the line of O-2p after spin alignment, which indicates the
3d-2p hybridization of the CoFe2O4 become stronger58 after spins
are aligned. As well, compared to the CoFe2O4 with anti-parallel
couplings, the CoFe2O4 with spin alignment has a higher spin
density on the oxygen atoms (Fig. 4b). The calculation indicates
that the magnetic moment of the ligand hole in CoFe2O4 is
0.059 μB without spin alignment and is 0.188 μB with spin
alignment, which indicates a FM ligand hole in CoFe2O4. A
concomitant increment of the 3d-2p hybridization associate with
FM ligand holes will facilitate spin-selected charge transport and
optimize the kinetics of the spin-charge transfer in the three-phase
interface.43,59 Thus, the dominant FM exchange between the
ferromagnetic catalyst and the adsorbed oxygen species (reactants)
will happen (Fig. 4c and Supplementary Figure 9) with smaller
electron–electron repulsion, which induce spin-dependent con-
ductivity and decrease the rate-limiting bonding energies, making
that the first electron transfer is no longer the RDS. We further
prepared the Pourbaix diagram of CoFe2O4 as shown in Fig. 4d,
which show that the surface termination of CoFe2O4 is oxygen
termination under OER conditions. The reaction started between
a ligand oxygen on the surface and the adsorbed oxygen species
(OH−), and the “first” electron transfer step is O*+OH−→
*OOH+ e−. The spin-related OER mechanisms show in Fig. 4e.
The FM CoFe2O4 with FM ligand hole will form oxygen
termination with fixed spin direction. The first electron transfer
process led to the generation of O(↓)−, that is, the first electron
transfer step is spin-polarization process to form the triplet state
intermediate O(↓)O(↓)H species with a lower barrier (Supple-
mentary Fig. 10). Consequently, the triplet state intermediate
O(↓)O(↓)H species will prefer to generate the triplet state O2. We
also conducted a DFT study on the free energies of OER steps on
the (111) surface of CoFe2O4 with and without spin alignment.
Please be noted that here the topmost layer of the slab model is
fully relaxed in the calculations since there is little difference
between the one-layer-relaxed model and the tww-layer-relaxed
model, which can be also found in literature60 The calculation
model of CoFe2O4 is shown in Supplementary Fig. 14. The (111)
surface is chosen because the TEM investigation found the surface
is rich in (111) and there is no remarkbale change on the surface
after OER (Supplementary Fig. 11). The energy diagram for
these two paths at 1.23 V (vs RHE)61,62 to produce triplet oxygen
is shown in Fig. 4f. The active sites with spin alignment are more
thermodynamically favourable to OER, if they associate with
ferromagnetic ligand holes,59 and the overpotential of producing
triplet oxygen is reduced by 390mV compared to that without
aligning spin. The coordinated inter-atomic aligned spin on active
sites plays an important role in optimizing the spin-dependent
reaction coordinates.
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It is worth noting that OER requires the generation of
paramagnetic O2 molecules starting from diamagnetic species
(OH− and H2O). For a reaction involving non-magnetic
molecules only, not impact significantly on the reaction kinetics.
We investigated the methanol oxidation reaction (MOR) and
ethylene glycol oxidation reaction (EGOR) on CoFe2O4 under the
magnetic field. Here, changes in FM catalyst conductivity caused
by magnetic fields can be ignored because that AB mediator is
also mixed with CoFe2O4 for their application as the electrode,
which dominant the electron conduction. Figure 5 reveals that
there is no remarkable difference in these reactions under the
magnetic field. This is because the reactants, intermediates, and
the products in these reactions are diamagnetic and there is no
spin-selected electron transfer between the active metal site and
the adsorbed reaction species.

The effect of gradient magnetic field, remanence, and demag-
netization. It is known that for ferromagnetic materials, the
magnetic moment pertains to the spin. The more ordered its
magnetic moment is, the higher the degree of positive spin
polarization is. As observed in the initial magnetization curve of
CoFe2O4 (Fig. 6a), its magnetic moments become more orderly as
the magnetic field increases, before reaching the saturation field.
We then investigated the effect of the gradient magnetic field on
OER activity. We carried out a series of CA measurements under
the different magnetic field strength at a constant potential of
1.66, 1.66, and 1.56 V (versus RHE) for CoFe2O4, Co3O4, and
IrO2, respectively (Fig. 6b). It can be seen that the current density
of the ferromagnetic catalyst CoFe2O4 increases with the increase
of the magnetic field strength. For non-ferromagnetic Co3O4 and

IrO2, there is almost no change when changing the field strength.
The increment of the current density is summarized in Fig. 6c.
The increase of spatial spin polarization related to the degree of
magnetization shows a positive correlation with the enhancement
of the OER for ferromagnetic CoFe2O4. We also measured the
LSV curves of all oxides before and after the CA experiment. As
seen in Supplementary Fig. 12, the OER performance ferromag-
netic CoFe2O4 can be further improved after the CA test under
magnetic field, but not for non-ferromagnetic Co3O4 and IrO2.
An interesting finding is that the OER performance of CoFe2O4

remains even after the magnetic field is removed (Fig. 6d). This is
because the magnetic moment is still aligned in magnetized
CoFe2O4 (Fig. 6e) after removing the magnetic field, which per-
sists as the spin polarizer to create spin polarization. This is an
important fact to make clear that the enhancement is due to the
indirect (strong) QSEI, and not due to weak direct spin-spin
interactions from the external field, a typically conceptual error.
More interestingly, when the magnetized CoFe2O4 was demag-
netized using an oscillating magnetic field (Fig. 6g), the OER
performance of CoFe2O4 reverted to the initial value before
the field was applied. The Tafel slope of CoFe2O4 is back to
120 mV dec−1, indicating the first electron transfer of the
adsorbed OH− is again the RDS, same as the status without the
magnetic field. Based on the above results, we can confirm that
the spin polarization facilitated OER is reversible and adjustable.

Discussion
It is found that ferromagnetic CoFe2O4 serves as the spin polarizer
facilitates the spin polarization under a constant magnetic field.
The increase of spatial spin polarization shows a positive
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correlation with the enhancement of spin transport (selection)
during OER. We have found that the Tafel slope of overall fer-
romagnetic CoFe2O4 switched from ~120 to ~90mV·dec−1 after
applying a magnetic field. It indicates the change of the RDS of
OER reaction under an external magnetic field, i.e. the first elec-
tron transfer step is no longer the RDS. The spin-polarized elec-
tron exchange between the ferromagnetic CoFe2O4 and the
adsorbed oxygen species (reactants) for the first electron transfer is
ferromagnetic-exchange-like under the principle of spin angular
momentum conservation, which leads to faster reaction kinetics

for the first electron transfer step. In contrast, such a phenomenon
was not observed on non-ferromagnetic catalysts. The findings
imply that the conservation of the total spin on the active sites
during OER is an important concept, which applies quantum
spin-exchange interactions to optimize reaction kinetics. The
kinetic improvement maintains after the removal of the external
magnetic field. The demagnetization can bring the activity back to
that before magnetization. This work provides new under-
standings of the effect of an external magnetic field on the OER
activity of a ferromagnetic catalyst.
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Methods
Material synthesis. Spinel CoFe2O4 oxides were synthesized by a modified con-
ventional solid-state chemistry method as described elsewhere45 with Fe(NO3)2
and Co(NO3)2 as precursors. 9 mmol mixture of Fe(NO3)3·9H2O (Alfa Aesar) and
Co(NO3)2ˑ6H2O (Sigma–Aldrich) was dissolved in 15 mL of DI water, followed by
stirring and vaporizing in oven at 80 °C. The resulting slurry was calcinated at
250 °C for 2 h in the air to decompose nitrous completely. After grinding, the black
oxide powders underwent calcination in air at 400 °C for 8 h. Co3O4 oxides were
synthesized by the same method.

Electrochemical characterizations. The OER tests were operated in a three-
electrode cell with a working electrode (WE) of glassy carbon flake (10 × 20 ×
0.5mm; Effective electrode area: 1.0 cm2), a counter electrode of platinum foil, and a
Hg/HgO reference electrode (RE) (filled with 1M KOH solution). The catalysts
electrode was fabricated by the recipe drop-castes method, which was reported in
elsewhere63. The catalysts were mixed with acetylene black (AB) at a mass ration of
5:1, then were dispersed in isopropanol/water (v/v= 1:4) solvent followed by the
addition of Na+-exchanged Nafion as the binder. The mixtures were ultrasonicated
for 30 min to reach homogeneous ink. The concentration of oxides in ink is
5 mg/ml, and AB is 1 mg/ml. Before drop-casting, the glassy carbon electrodes were
polished to a mirror finish with α-Al2O3 (50 nm) and washed by IPA and water to
clean up completely. Finally, the as-prepared ink (100 ul) was dropped onto glassy
carbon electrodes to reach a loading mass of 500 μgox cm−2 and the electrodes were
dried overnight at room temperature. Cyclic voltammograms (CVs), linear sweep
voltammetry (LSV), and chronoamperometry (CA) were performed in O2-saturated
1M KOH by using Bio-logic SP 150 potentiostat. All potentials were converted to
RHE scale according to the following equation: RHE=Hg/HgO+ 0.098 with iR
correction. The tests of methanol oxidation reaction (MOR) and ethylene glycol
oxidation reaction (EGOR) on CFO electrodes are similar to the OER test. The
difference is that the MOR and EGOR were studied in 1M KOH 100ml electrolyte
in the presence of 1 ml methanol and 1 ml ethylene glycol, respectively64.

Materials characterizations. The X-ray diffraction (XRD) of oxides were carried
on Bruker D8 diffractometer at a scanning rate of 2° min−1, under Cu-Kα radiation
(λ= 1.5418 Å). DC magnetization measurements were performed on a Super-
conducting Quantum Design (SQUID) magnetometer (MPMS-XL). The SQUID
measurements of the magnetization of samples as a function of the magnetic field
were carried out at 300 K in fields between −5 T and +5 T. The high-resolution
transmission electron microscopy (HRTEM) was carried JEOL JEM- 2100 plus
microscope at 200KV. The STEM results presented here were obtained using the
200 kV JEOL ARM electron microscope equipped (JEOL, Tokyo, Japan) with
double aberration correctors, a dual-energy-loss spectrometer and a cold field
emission source. The atomic-resolved STEM images were collected with a condense
aperture of 28 mrad and a collection angle of 90–370 mrad for HAADF and
11–23 mrad for ABF images. The XPS measurements were performed using PHI-
5400 equipment with Al Kα beam source (250W) and a position-sensitive detector
(PSD) was used to determine the surface composition of the materials. The Fourier
transform infrared spectroscopy–Raman spectroscopy was carried with a confocal
Raman microscope (Horiba HR Evolution), equipped with a diode laser emitting at
532 nm. The nominal laser power was filtered down to 1 mW to avoid sample
overheating. Spectra were recorded with the accumulation time of 60 s.

DFT studies. All the density functional theory (DFT) calculations were performed
by Vienna Ab-initio Simulation Package65,66 (VASP), employing the Projected
Augmented Wave67 (PAW) method. The revised Perdew-Burke-Ernzerhof (RPBE)
functional was used to describe the exchange and correlation effects.68–70 The GGA
+U calculations are performed using the model proposed by Dudarev et al.71, with
the Ueff (Ueff=Coulomb U – exchange J) values of 3.3 eV and 4 eV for Co and Fe,
respectively. For all the geometry optimizations, the cutoff energy was set to be
500 eV. A 3 × 3 × 1 Monkhorst-Pack grids72 was used to carry out the surface cal-
culations on the (111) surface of CoFe2O4. At least 20 Å vacuum layer was applied in
z-direction of the slab models, preventing the vertical interactions between slabs.

In alkaline conditions, OER could occur in the following four elementary steps:

OH� þ * ! *OHþ e� ð2Þ

OH� þ *OH ! *Oþ e� ð3Þ

OH� þ *O ! *OOHþ e� ð4Þ

OH� þ *OOH ! *þO2 þ H2Oþ e� ð5Þ
where * denotes the active sites on the catalyst surface. Based on the above
mechanism, the free energy of three intermediate states, *OH, *O, and *OOH, are
important to identify a given material’s OER activity. The computational hydrogen
electrode (CHE) model73 was used to calculate the free energies of OER, based on
which the free energy of an adsorbed species is defined as

4Gads ¼ 4Eads þ4EZPE � T4Sads ð6Þ
where ΔEads is the electronic adsorption energy, ΔEZPE is the zero point energy

difference between adsorbed and gaseous species, and TΔSads is the corresponding
entropy difference between these two states. The electronic binding energy is
referenced as ½ H2 for each H atom, and (H2O –H2) for each O atom, plus the
energy of the clean slab. The corrections of zero point energy and entropy of the
OER intermediates can be found in the Supplementary Table 2.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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