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Charge density wave (CDW) strongly affects the electronic properties of two-dimensional (2D) materials and can be
tuned by phase engineering. Among 2D transitional metal dichalcogenides (TMDs), VTe2 was predicted to require small
energy for its phase transition and shows unexpected CDW states in its T-phase. However, the CDW state of H-VTe2 has
been barely reported. Here, we investigate the CDW states in monolayer (ML) H-VTe2, induced by phase-engineering from
T-phase VTe2. The phase transition between T- and H-VTe2 is revealed with x-ray photoelectron spectroscopy (XPS) and
scanning transmission electron microscopy (STEM) measurements. For H-VTe2, scanning tunneling microscope (STM)
and low-energy electron diffraction (LEED) results show a robust 2

√
3×2

√
3 CDW superlattice with a transition temper-

ature above 450 K. Our findings provide a promising way for manipulating the CDWs in 2D materials and show great
potential in its application of nanoelectronics.

Keywords: charge density wave, H-VTe2, phase engineering, transitional metal dichalcogenides
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1. Introduction
As a collective phenomenon of great interest in con-

densed matter physics, charge density wave (CDW)[1]

is discovered in many transitional metal dichalcogenides
(TMDs).[2] In this group of two-dimensional (2D) materials
with diverse components and unique properties, the CDW
transition not only reflects diverse spatial and electronic struc-
ture with complicated origins,[3–6] but also exhibit great po-
tential for applications.[7–12] For the required manipulation,
phase engineering[13] is an effective method to modify both
the structural and electronic properties of TMDs,[14,15] includ-
ing CDWs.[14,16] Such manipulation usually requires energy to
overcome the barrier between different phases.[15,17,18] Thus,
phase engineering is more effective on a TMD material with a
smaller formation energy difference between phases.

Among TMDs, vanadium dichalcogenides (VX2, X = S,
Se, Te) are drawing tremendous attention recently and have
been reported with several unexpected CDW states and elec-
tronic properties.[19–27] According to the previous calculation
results,[28–31] T and H-phase VX2 share very similar forming
energy, especially for VTe2, meaning a high possibility for
phase engineering. The experimental reports of CDW in VTe2

are focused on its T-phase, which is the stable phase in its bulk.
However, the report on CDW states of H-VTe2 is still rare, in

spite of the intense theoretical calculations.[30–35]

In this study, we report the phase-engineering of mono-
layer (ML) VTe2 from T-phase to H-phase and its induced
robust CDW states. Epitaxial T-phase VTe2 is transformed
into H-phase with an annealing process, which is confirmed
by XPS and cross-section STEM results. The STM and LEED
results reveal that the ML T-VTe2 has a 4× 4 CDW super-
lattice at low temperature, while the ML H-VTe2 is found to
exhibit a robust 2

√
3× 2

√
3 CDW superlattice with a transi-

tion temperature above 450 K. Thus, phase engineering not
only induces robust CDW states in ML VTe2 with applica-
tions in optoelectronics[7] and electronics,[9,10] but also pro-
vide a promising approach to manipulating the CDW behavior
in 2D TMDs and exploring its nature.

2. Experimental section
2.1. Sample preparation

The sample of monolayer T-VTe2 on epitaxial graphene
on silicon carbide (Gr/SiC) was fabricated in an ultrahigh vac-
uum (UHV) chamber with the base pressure of 4×10−10 mbar
(1 bar = 105 Pa), which was equipped with standard MBE
facilities. The Gr/SiC substrate was prepared by annealing
the doped SiC crystalline substrate (TankeBlue) at 1500 K
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for 40 minutes after degassing at 900 K for 1 hour. Vana-
dium (ESPI Metals, 99.999%) atoms and tellurium (Sigma,
99.999%) atoms were deposited on Gr/SiC substrate from an
electron-beam evaporator and a Knudsen cell, with the sub-
strate temperature of 510 K. The grown process was under
Te-rich condition, aiming to guarantee that enough Te atoms
react with V atoms. And the growth rate of T-VTe2 on Gr/SiC
is about one layer per hour. Partial transformed H-VTe2 was
obtained by annealing T-VTe2 at 530 K for 40 minutes in an
ultrahigh vacuum condition.

2.2. XPS measurements

The in-situ x-ray photoelectron spectroscopy measure-
ments of as-grown and annealed samples were performed
in the Beijing Synchrotron Radiation Facility (BSRF). Syn-
chrotron radiation light, which was monochromated by four
high-resolution gratings and controlled by a hemispherical en-
ergy analyzer, has photon energy from 10 eV to 1100 eV.

2.3. STEM measurements

Before STEM measurements, we firstly deposited 10-
nm C60 and 50-nm Sb on as-grown T-VTe2 and partial trans-
formed H-VTe2 on Gr/SiC, aiming to protect the sample from
oxidation and damage. Then the samples were sliced along
SiC(1120) face by a focused ion beam (FIB) and were fur-
ther thinned to around 40-nm thickness using low-energy ion
milling. And the cross-section high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM)
images were obtained with an aberration-corrected STEM op-
erated at 100 kV.

2.4. STM and LEED measurements

All the in-situ STM measurements were carried out in
ultrahigh vacuum condition, with a base pressure under 4×
10−10 mbar, in the constant-current mode, at room tempera-
ture (RT) (300 K) and 4.5 K. The in-situ LEED characteriza-
tions were carried out by an Omicron LEED system, with the
base pressure under 4×10−10 mbar. The results were obtained
with the electron energy of 40 eV.

2.5. ARPES measurements

ARPES measurements were performed at the photoelec-
tron spectroscopy end station of the Beijing Synchrotron Ra-
diation Facility 4B9B beamline. The experiments used He I
(hν = 21.2 eV) resonance lines and a VG SCIENTA R4000
analyzer with the instrument energy resolution was better than
30 meV, and the angular resolution was 0.3◦. All the data were
recorded in UHV (better than 3×10−10 mbar, 1 bar = 105 Pa)
at room temperature.

2.6. DFT calculations

The first-principles calculations for the geometry opti-
mization and electronic structures of VTe2 monolayers are

performed by using the Vienna ab initio simulation pack-
age (VASP).[36] The projector augmented wave (PAW)[37]

pseudopotentials and the generalized gradient approximation
(GGA) exchange–correlation functionals proposed by Perdew,
Burke, and Ernzerhof (PBE)[38] are used. The 11× 11× 1 k-
point grid is used in geometry optimization with a free energy
tolerance of 10−5 eV and a force tolerance of 0.01 eV/Å. Spin-
orbit coupling is included when calculating the band struc-
tures. A vacuum of 25 Å is adopted to avoid the vertical direc-
tion interactions between periodic layers.

2.7. Results and discussion

High-quality monolayer T-VTe2 was fabricated on
Gr/SiC substrate in an ultrahigh vacuum chamber through co-
evaporating of V and Te atoms with the substrate temperature
of 510 K (see Sample preparation). And with further anneal-
ing of the as-grown sample at 530 K for 40 min, T-VTe2 will
partially transform to H-VTe2, as shown in Fig. 1(a). The
XPS characterization results of as-grown and annealed sam-
ples in Fig. 1(b) show that the binding energy of Te 3d5/2
and 3d3/2 for the as-grown sample is 572.0 eV and 582.4 eV,
agreeing with previous work about T-VTe2.[27] While, there is
another set of peaks at 572.3 eV and 582.7 eV for annealed
sample, which shows an energy shift of 0.3 eV to the T-VTe2

peaks. This extra set of peaks implies an emergent new phase
of VTe2.

To characterize the atomic structure of the emergent
phase, we performed cross-section STEM measurements on
the T-VTe2 and T/H-VTe2 samples. As shown in Figs. 2(a)
and 2(d), the T and H phase VTe2 can be clearly distinguished
from the side view of the atomic model. In the STEM results
shown in Figs. 2(b) and 2(e), the cross-section image of the
VTe2, corresponding to the side view atomic model, reveals
the structure of T and H-VTe2 unambiguously. From the line
profiles shown in Figs. 2(c) and 2(f), we can read the size of
the marked unit cell is 0.31 nm and 0.32 nm for T and H-VTe2,
respectively. Then, we can calculate that the lattice constant
of T and H-VTe2 is 0.35 nm and 0.36 nm, respectively. Thus,
we prove that the phase-engineering of monolayer VTe2 can
be performed from T to H-phase through a transition process
by annealing, demonstrated by the combination of XPS and
cross-section STEM results.

To characterize the VTe2 sample in detail, we performed
the room temperature (RT) STM and LEED measurements on
the as-prepared and annealed VTe2 sample. Figure 3(a) shows
the STM image of the monolayer T-VTe2 islands in the as-
prepared VTe2 sample, which are clean and uniform, indi-
cating the high quality of the fabricated film. As shown in
Fig. 3(b), the apparent height of the T-VTe2 island is 0.98 nm.
The LEED pattern reveals the six-fold T-VTe2 lattice shown
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in Fig. 3(c). For the annealed sample, besides the T-VTe2 is-
lands, there are islands with irregular boundaries and 0.95-nm
apparent height, which are the H-VTe2 islands, as shown in
Figs. 3(d) and 3(e). These H-VTe2 islands are dominated in

the annealed sample. Thus, in the LEED pattern shown in
Fig. 3(f), we can see the spots of 2

√
3×2

√
3 superlattice and

its secondary diffraction spots appeared, which is absent in
that of the as-prepared T-VTe2 sample.
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Fig. 1. XPS results of T-VTe2 and T/H-VTe2 samples. (a) Schematic diagram of the fabrication of the T/H-VTe2 sample on the graphene substrate.
(b) The Te 3d spectra of the T-VTe2 (as-prepared) and T/H-VTe2 sample (after annealing). The Te 3d peak positions (of pure T-VTe2 at 582.4 eV and
572.0 eV, of T/H-VTe2 mixture at 582.7 eV and 572.3 eV), showing an energy shift of 0.3 eV.
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Fig. 2. The cross-section STEM results of T- and H-VTe2. (a) and (d) The atomic models of T (a) and H-VTe2 (d) in side view (upper) and top view
(lower). (b) and (e) The cross-section HAADF-STEM images of T (b) and H-VTe2 (e). The unit cells in side view are marked with black dashed frames.
(c) and (f) The line profiles along the blue and red arrows in panels (b) and (e), respectively.

Moreover, atomic resolution STM measurements were
carried out to reveal the CDW superlattice, to further charac-
terize the atomic structure of the monolayer VTe2. The zoom-
in atomic resolution STM image, the corresponding line pro-
file, and the fast Fourier transform (FFT) pattern of monolayer
T-VTe2, as shown in Figs. 4(a)–4(c), demonstrate the hexag-
onal atomic lattice with 0.35-nm lattice constant, without
any superstructure. The angle-resolved photoemission spec-
troscopy (ARPES) results also reveal the electronic structure,
which is the same as calculated (See Fig. S1 in Supplementary
information) and previous reports.[25–27] These results agreed
with its LEED pattern at RT in Fig. 3(c). As a comparison,
the atomic resolution STM image of T-VTe2 at 4.5 K is shown

in Fig. 4(d), which clearly displays a superlattice, as the re-
ported CDW pattern of T-VTe2 below 186 K.[23,25–27] The line
profile shown in Fig. 4(e) reveals the period of the CDW pat-
tern is 1.42 nm. Combined with the 4× 4 superlattice in the
FFT pattern shown in Fig. 4(f), we can calculate the lattice
constant of 0.35 nm, which agrees with the STM and STEM
results mentioned above.

In contrast with the 4× 4 CDW pattern of ML T-VTe2

at 4.5 K, ML H-VTe2 shows a 2
√

3× 2
√

3 CDW superlattice
appearing at 300 K. From the atomic-resolution STM image
shown in Fig. 5(a), we can see that the 2

√
3× 2

√
3 CDW su-

perlattice clearly, as depicted. As shown in Fig. 5(b), the line
profile indicates that the lattice constant of H-VTe2 is 0.36 nm,
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which is consistent with the STEM results. Moreover, the cor-
responding FFT pattern reveals the 2

√
3× 2

√
3 superlattice,

which agrees with the same superlattice in LEED results. To
investigate the strength of the CDW in H-VTe2, we performed
varied temperature LEED measurements at 400 K and 450 K,

as shown in Figs. 5(d) and 5(e), respectively. From the LEED
patterns, we can see the 2

√
3× 2

√
3 CDW superlattice of H-

VTe2 clearly, even at 450 K. Thus, the CDW transition temper-
ature of H-VTe2 is higher than 450 K, which means the CDW
state is robust.
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Fig. 3. Room-temperature STM and LEED results of the T-VTe2 and T/H-VTe2 samples. (a) and (d) STM topographic images (−2.0 V, 200 pA)
of T-VTe2 (a) and H-VTe2 (d) islands, respectively. (b) and (e) Line profiles along the blue and red lines in panels (a) and (d), respectively. (c) and
(f) LEED patterns of the T-VTe2 and T/H-VTe2 sample. The diffraction spots of T-VTe2 (aT), T/H-VTe2 (aH), H-VTe2 superlattice (2

√
3aH) and its

secondary diffraction spots are marked with the blue, purple, red and yellow dotted circles, respectively.
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Fig. 4. Atomic-resolution STM images of T-VTe2. (a) and (d) Atomic-resolution STM images of T-VTe2 measured at 300 K (−0.1 V, 1 nA) (a) and
4.5 K (−50 mV, 1.5 nA) (d), respectively. The atomic lattice and CDW superlattice are depicted with white and blue dashed rhombus, respectively. (b)
and (e) Line profiles along the white and blue dashed arrows in panels (a) and (d), respectively. (c) and (f) The FFT patterns of the STM images in
panels (a) and (d), respectively. The spots of the atomic lattice at 300 K, 4.5 K, and the CDW superlattice are marked with black, purple, and blue dotted
circles, respectively.
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Fig. 5. CDW superlattice of H-VTe2. (a) Atomic-resolution STM image (0.1 V, 2 nA) of H-VTe2 measured at 300 K. The unit cell of CDW superlattice
is depicted with the yellow dashed rhombus. (b) Line profile along the white dashed arrow in panel (a). (c) The FFT pattern of the image in panel (a).
The spots of the H-VTe2 atomic lattice and CDW superlattice are marked with purple and red dotted circles, respectively. (d) and (e) LEED patterns
of the T/H-VTe2 measured at 400 K and 450 K, respectively. The spots of the T/H-VTe2 lattice and CDW superlattice are marked with purple and red
dotted circles, respectively.

The Fermi-surface nesting[39] and the electron–phonon
coupling[20,25] are the two common theories used to explain
the origin of CDW in 2D TMDs. In the previous ARPES in-
vestigation of monolayer T-VTe2, the CDW behavior in such
a 2D layer was attributed to the Fermi-surface nesting of its
anisotropic gaped Fermi contour.[25] While other observations
by STM and STS mapping suggested that there could be other
mechanisms contributing to VTe2’s CDW, which leads to the
breaking of its three-folder symmetry. In the H-VTe2 case, the
CDW behavior becomes further complicated with the extreme
robustness via temperature, which further indicates that mech-
anism other than Fermi-surface nesting and electron–phonon
coupling is involved in the origin of its CDW. Moreover, in
contrast with other TMDs, such as H-TaSe2,[40] T-TiSe2,[41]

and T-VSe2,[22] the higher CDW transition temperature of H-
VTe2 resembles those of the mott-insulating T-NbSe2

[42–44]

and T-TaS2,[4,45,46] in which the electron correlation take dom-
inance. Whether some sort of electron correlation contributes
to the origin of H-VTe2’s CDW still requires further investi-
gation, but nevertheless, monolayer H-VTe2 provides an ideal
platform for exploring the mechanism behind the complicated
CDWs in 2D-TMD systems.

3. Conclusion and perspectives
In summary, we report the 2D VTe2 phase engineer-

ing and robust CDW state of monolayer H-VTe2. Unlike
the monolayer T-VTe2 with a 4× 4 CDW superlattice ap-
pearing only at low temperature, monolayer H-VTe2 owns a

2
√

3× 2
√

3 CDW superlattice with a transition temperature
above 450 K. Therefore, the 2D phase engineering offers an
effective way for manipulating the CDW state of 2D TMDs.
We believe the discovery of such an extremely robust CDW
is useful for developing the applied 2D nanoelectronic devices
based on the collective phenomenon.
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