
Articles
https://doi.org/10.1038/s41563-022-01291-5

1Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing 
Institute of Technology, Beijing, China. 2Chongqing Center for Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing, People’s 
Republic of China. 3School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore. 4SEU-FEI Nano-Pico Center, 
Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, 
Nanjing, People’s Republic of China. 5Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, 
Beijing Institute of Technology, Beijing, People’s Republic of China. 6Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), 
Ulsan, Republic of Korea. 7Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy 
of Sciences, Beijing, People’s Republic of China. 8Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of 
Sciences, Beijing, People’s Republic of China. 9School of Physical and Mathematical Science, Nanyang Technological University, Singapore, Singapore. 
10State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, People’s Republic of China. 
11The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan. 12Department of Chemistry, National University of Singapore, 
Singapore, Singapore. 13Beijing Key Laboratory of Green Recovery and Extraction of Rare and Precious Metals, University of Science and Technology Beijing, 
Beijing, People’s Republic of China. 14School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People’s 
Republic of China. 15School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, People’s 
Republic of China. 16Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation 
Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, People’s Republic of China. 17School of Integrated Circuits 
and Electronics, Beijing Institute of Technology, Beijing, People’s Republic of China. 18School of Materials Science and Engineering, Shanghai University, 
Shanghai, People’s Republic of China. 19School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea. 
20CINTRA CNRS/NTU/THALES, Research Techno Plaza, Singapore, Singapore. 21School of Electrical and Electronic Engineering, Nanyang Technological 
University, Singapore, Singapore. 22Present address: Songshan Lake Materials Laboratory, Guangdong, China. 23These authors contributed equally:  
Jiadong Zhou, Chao Zhu, Yao Zhou. ✉e-mail: jdzhou@bit.edu.cn; yeliang.wang@bit.edu.cn; ygyao@bit.edu.cn; z.liu@ntu.edu.sg

Two-dimensional (2D) materials including different systems 
such as single (elementary), binary and ternary crystals 
have drawn extensive attention as they possess fundamen-

tally physical phenomena with potential applications in quantum 
devices and information technology1,2. To study the underly-
ing physics and realize potential applications, many efforts have 
been devoted to synthesize ultrathin 2D materials. To date, dif-
ferent bottom-up methods have been exploited for achieving dif-
ferent types of 2D material3–5. Recently, although few works have 
attempted to synthesize binary transition metal chalcogenides 
(TMCs)6–9, the controllable synthesis of 2D binary chalcogenides 
with different phases/compositions remains challenging, especially 
for the preparation of 2D transition metal phosphorous chalcogen-
ide (TMPC) crystals6,10–13. So far, no general method can be used 

to synthesize these 2D multiphase/multicomposition materials. 
This is attributed to the fact that they have variable valence states, 
polymorph characteristics and phases, such as MX (hexagonal and 
tetragonal), MX2 (hexagonal and tetragonal), M2X3, M3X4, M5X8, 
MPX, MPX3 and so on14,15. All these make the chemical reactions 
for preparing a single phase of TMPCs and TMCs uncontrollable. 
It is worth noting that these TMPCs and TMCs exhibit rich atomic 
structures and exotic physical properties. For example, MPX3, 
FexGeTe2 and FeSexTe1–x are excellent candidates to study 2D anti-
ferromagnetism, ferromagnetism and topological superconduc-
tivity16–19. Meanwhile, TMPCs provide fantastic systems to study 
many-body excitons and spintronic devices20. Therefore, the con-
trollable synthesis of a single-phase/single-composition crystal is 
urgently required.
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Two-dimensional (2D) materials with multiphase, multielement crystals such as transition metal chalcogenides (TMCs) (based 
on V, Cr, Mn, Fe, Cd, Pt and Pd) and transition metal phosphorous chalcogenides (TMPCs) offer a unique platform to explore novel 
physical phenomena. However, the synthesis of a single-phase/single-composition crystal of these 2D materials via chemical 
vapour deposition is still challenging. Here we unravel a competitive-chemical-reaction-based growth mechanism to manipulate 
the nucleation and growth rate. Based on the growth mechanism, 67 types of TMCs and TMPCs with a defined phase, controllable 
structure and tunable component can be realized. The ferromagnetism and superconductivity in FeXy can be tuned by the y value, 
such as superconductivity observed in FeX and ferromagnetism in FeS2 monolayers, demonstrating the high quality of as-grown 
2D materials. This work paves the way for the multidisciplinary exploration of 2D TMPCs and TMCs with unique properties.
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We first discuss the difficulties in the controllable synthesis of 2D 
materials with multiple phases and multiple compositions. Figure 1a  
shows the chemical reactions among precursors MClx, P and S 
for preparing MaXb and MmPnXz. (1) Note that MaXb and MmPnXz 
have different compositions with different phases. According to 
changes in the Gibbs free energy (taking the Cd-based 2D material 
in Supplementary Section 1 as an example) and previously reported 
results (Supplementary Tables 1 and 2), many reactions can take 
place during chemical vapour deposition (CVD) growth, illustrating 
that the different compositions and phases of 2D materials (binary 
MaXb and ternary MmPnXz) can be thermodynamically obtained and 
they are competitive with each other. Thus, a controllable chemical 
reaction is required to realize the compound with a specific com-
position and tunable phases, such as MX, MX2 and their hexagonal 
and tetragonal phases. (2) Similar to—but more complex than—the 
growth of binary MaXb, the chemical reactions during the growth 
of ternary MmPnXz include binary (MaXb, McPd and PS) and ternary 
reactions. Therefore, the preparation of MmPnXz not only needs to 
control the reactions for ternary composition growth but also to 
avoid the formation of binary crystals (MaXb, PX and McPd). (3) 
Meanwhile, some MaXb and MmPnXz materials possess non-layered 
structures, leading to competition between the 2D epitaxial growth 
(Frank–van der Merwe) and island growth (Stranski–Krastanov) 
modes21 (Fig. 1b) during their synthesis; the former growth mode 
should be controlled for obtaining ultrathin 2D materials.

To address the above challenges, a realization of a direction- 
controllable growth process is required for controlling the 
chemical reactions and growth modes. This work proposes a 
competitive-reaction-based kinetic growth mechanism, which was 
realized by controlling the growth temperature and vapour pres-
sure. Here the vapour pressure was adjusted by tuning the size 
of metal precursors. We will analyse the role of precursor size in 
the mechanism part. Therefore, TMCs and TMPCs with different 
compositions and defined phases are readily synthesized. Based on  
this mechanism, more than 60 types are successfully achieved, 
including 30 TMCs and 21 TMPCs. Most materials (especially all 
the TMPCs) have not been directly reported with the CVD method. 
We have also extended the method to successfully synthesize other 

chalcogenides based on 3d transition metals (for example, Cr, Mn 
and Cu) with different phases.

The corresponding reaction conditions and tailored reci-
pes are detailed in Methods and summarized in Supplementary 
Fig. 1 and Supplementary Table 3. Supplementary Fig. 2 and 
Supplementary Section 2 show the phase diagram for CVD growth 
and examination of each material. Figure 2a shows the summary 
of optical images of 2D TMCs and TMPCs synthesized by our 
competitive-reaction-based growth strategy. For typical Fe-based 
2D crystals, binary FeX and FeX2 (X = S, Se and Te) with differ-
ent phases and ternary FePX3 (X = S, and Se) crystals, as well as 
their alloys, can be controllably synthesized. Specifically, the two 
phases of FeX can be achieved by tuning the growth temperature 
and chalcogen temperature. For example, the two phases of FeS 
can be obtained by tuning the growth temperature (~600–640 °C) 
and the S precursor temperature (~120–140 °C). At a low growth 
temperature, ultrathin non-layered hexagonal FeX was obtained, 
whereas monolayer tetragonal FeX was achieved at higher tem-
peratures. Meanwhile, by tuning the ratio and temperature of S, Se, 
Te and metal precursors, the heterostructures and alloys based on 
hexagonal and tetragonal morphologies were also achieved, which 
offer a great platform to probe high-temperature 2D magnetism 
and Majorana bound states22,23. Analogous to FeX, FeX2 crystals and 
their alloys also possess two different crystal structures, exhibiting 
the shapes of hexagons, triangles, trapezoids and nanowires. Their 
synthesis protocol is similar to FeX and the appearance of ultra-
thin trapezoids and nanowires is attributed to the decomposition 
and phase transition with an increase in growth temperature. For 
example, the ultrathin trapezoidal and monolayer triangular shapes 
of FeS2 are obtained at a growth temperature of ~640–675 °C and 
S precursor temperature of ~140–170 °C, whereas one-dimensional 
FeS2 nanowires can be obtained at a growth temperature above 
675 °C (Fig. 2). The optical images and corresponding Raman spec-
tra are shown in Supplementary Figs. 3–15. The thickness and sta-
bility of large-scale FeX and FeX2 are also studied (Supplementary 
Figs. 16–19). Supplementary Fig. 7 and Supplementary Figs. 20 
and 21 discuss details about the reproducibility and density of 
FeX and FeX2 flakes, respectively. Note that changing both metal 
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and chalcogen compositions away from the endpoints of Fe-based  
2D materials is very important since they should have excellent 
physical properties. By tuning the temperature of metal chlo-
ride and chalcogen, the quantitative compositions of Fe-based 2D 
materials can be controllably synthesized (Supplementary Fig. 22). 
Furthermore, a large-scale film was also synthesized and discussed 
(Supplementary Fig. 23).

Similarly, TMPCs have more than five different chemical compo-
sitions: MPX, MPX3, MPX4, M(PX3)2 and M3P2X8 (ref. 24). With our 
proposed growth mechanism, ultrathin MPX, MPX3 and M3P2X8 
are successfully synthesized, including 13 crystals and 8 alloys. The 
corresponding optical images and Raman spectroscopy data are 
shown in Supplementary Figs. 24–31. Notably, MPX3-based alloys 
can be achieved by tuning the metal precursor ratio (Supplementary 
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Fig. 32) and are similar to the growth conditions of Fe-based alloys. 
Furthermore, the prepared Cr-, Mn-, Co-, Ni- and Cu-based 2D 
materials with different compositions further demonstrate the uni-
versality of our growth method (Supplementary Figs. 33–35). The 
detailed thicknesses of Fe-based 2D materials and typical MPX3 are 
shown in Supplementary Fig. 36.

Next, we focus on the growth mechanism of the proposed 
method. Here we take Fe(P)Sx as an example since others have a 
similar growth process. Figure 3a illustrates the growth of these 
materials through the interaction between FeCl2 molecules and S/P 
vapours. Note that the changes in Gibbs free energy show that the 
formation of Fe-based binary (ternary) crystals is thermodynami-
cally favourable (Supplementary Section 3.1). However, the com-
petitive chemical reactions during binary (ternary) crystal growth 
cannot be controlled when small-sized nanoparticle chlorides are 
used as the precursors25,26. This is attributed to the fact that the 
high evaporation rate of the small-sized precursor (especially for 
sizes less than ~50 nm) leads to high reactivity (Fig. 3a, steps 1–3)  
and thus satisfies the reactions for most Fe-based crystals. 
Therefore, nucleation and growth cannot be controlled. Figure 3b 
shows the evidence that many nuclei of Fe(P)Xy were generated and 
large-sized particles were obtained (FexSy with different phases, FexP 
and FePSy Fex(P)Sy particles (Supplementary Fig. 37 shows the scan-
ning electron microscopy image and energy-dispersive X-ray spec-
troscopy (EDS) results) are preferable). This is attributed to the fact 
that the uncontrolled reactions induced by the high partial vapour 
pressure leads to the island growth (Fig. 3a, step 3). Thus, we can 
conclude that the nucleation and growth rate of a single phase is 
a kinetics-determined process rather than a thermodynamically 
determined one. To control the growth kinetics and realize a specific 
chemical reaction, large-sized precursors with low vapour pressure 
were used, which help to regulate the competitive reactions for the 
single-phase growth of a specific material in terms of nucleation and 
epitaxial growth (Fig. 3a, steps 4–6). Therefore, ultrathin 2D crys-
tals (such as FeSx and FePS3) can be obtained by using large-sized 
FeCl2 precursors (Fig. 3a, steps 4–6).

The thermogravimetric analysis (TGA) shown in Fig. 3c fur-
ther demonstrates that at low temperatures, FeCl2 nanoparticles are 
much easier to evaporate than FeCl2 bulk; evidently, small-sized 
precursors (red curves) evaporate much faster than large-sized 
ones (black curves) at lower temperatures. As a result, the chemi-
cal reaction for a specific phase cannot be controlled due to the 
high partial vapour pressure. Meanwhile, the formation of exces-
sive nuclei and the resulting island growth mode with uncontrol-
lable compositions hinder the crystallization of single-phase Fe(P)
Xy (Supplementary Figs. 40 and 41). In contrast, large-sized pre-
cursors with a low partial vapour pressure can be easily tuned for 
specific material growth and significantly reduce the nucleation 
density and promote the growth with the Frank–van der Merwe 
mode, thereby facilitating the crystallization of TMCs and TMPCs. 
Supplementary Section 3.4 provides the effect of precursor size 
as well as detailed discussions. Supplementary Information dis-
cusses the kinetics of nucleation under different growth conditions 
(Supplementary Figs. 40–47).

We further analyse the effects of growth kinetics on compo-
sitions and phases. Fe-based crystals can be classified into two 
different chemical compositions (TMCs, FeX and FeX2; TMPCs, 
FePX and FePX3) and each composition has several different 
phases. The competitive chemical reactions among these compo-
sitions and phases can be controlled by adjusting the vapour pres-
sures of FeCl2, S and P via the reaction temperature since they have 
different formation energies. For instance, FeCl2 at higher temper-
atures (~650–675 °C) can form FeX2, whereas lower temperatures 
(~580–650 °C) can produce FeS and FePS3. The established growth 
phase diagram is shown in Fig. 3d. Note that the amount of metal 
precursors is sufficiently maintained during the reactions and 

cannot affect the phase and composition of Fe-based 2D materials 
in a short growth time.

Density functional theory (DFT) calculations were performed 
to reveal the competitive chemical reaction mechanism of TMCs27. 
Supplementary Section 3 shows the chemical-reaction forma-
tion energy of FeXy and their alloys. Supplementary Figs. 48–51 
discuss the DFT calculations for both FeS and FeS2. Accordingly, 
the chemical-reaction-based transformation of FeS to FeS2 can be 
realized by tuning the critical partial pressure and S species. The 
free energies of S2/S8 gases depending on the partial pressure and 
temperature are shown in Fig. 3e,f. The critical partial pressure for 
S2 gas to transform FeS to FeS2 at 900 K is ~1 Pa, whereas the criti-
cal partial pressure for S8 gas is higher than 1 atm. Therefore, tun-
ing the vapour pressure of S and FeCl2 can control the competitive 
chemical reactions between FeX and FeX2 phases (Supplementary 
Section 3.4). The calculation regarding the chemical transition 
from FeS to FeS2 matches with the experimental observation, 
where FeS grows at a low temperature and FeS2 grows at a high 
temperature with different vapour pressures of the precursor. 
Supplementary Figs. 50 and 51 discuss more calculations about 
the alloys (FeS2xSe2(1–x) and FeSxSe1–x), which show that FeS2xSe2(1–x) 
or FeSxSe1–x with any composition can be synthesized by tuning the 
supply of S and Se.

The atomic structures and chemical compositions of the as- 
synthesized 2D crystals are further uncovered by aberration- 
corrected scanning transmission electron microscopy–annular 
dark-field (STEM-ADF) imaging, EDS and electron energy loss 
spectroscopy (EELS). Since it is challenging to transfer monolayer 
2D 3d crystals onto TEM grids, we mainly focus on the character-
ization of few-layer 2D Fe-based samples and TMPCs with identical 
crystal structures. According to the combined analysis of experi-
mental and simulated Z-contrast STEM images, EDS mapping 
and EELS results, most of the obtained Fe-based chalcogenides 
and TMPCs are confirmed to belong to five different space groups 
(Supplementary Fig. 46), which are classified into five categories 
here: (1) P63/mmc (non-layered FeX with hexagonal/triangular 
shape); (2) P4/nmm (layered FeX with tetragonal shape); (3) P3̄m1 
(layered FeX2 with hexagonal/triangular/trapezoidal shape); (4) Pa3̄ 
(non-layered FeS2 nanowires) and Pmnn (non-layered FeSe2 and 
FeTe2 nanowires); (5) C2/m (MPX3, M = Mg, V, Cr, Mn, Fe, Co, Ni, 
Ag, Cd or Zn). For clarifications, we select FeSx and some TMPCs 
to demonstrate the diversity and controllability of the crystal struc-
tures. Figure 4a shows a typical atomic-resolution STEM-ADF 
image of a hexagonal-shaped FeS crystal along the [001] zone axis, 
where the high-contrast (brighter) and low-contrast (darker) spots 
represent the Fe and S atom columns, respectively, as aligned with 
the atomic structure model. The sharp dots in the fast Fourier 
transform (FFT) patterns (Fig. 4a–l, insets) obtained from the cor-
responding larger area further suggest the single crystallinity of the 
flake and exhibit the hexagonal symmetry feature of the P63/mmc 
lattice. In comparison, the STEM-ADF image together with the FFT 
pattern (Fig. 4b, inset) demonstrates that a tetragonal-shaped FeS 
crystal possesses a distinct atomic arrangement, where each Fe (S) 
atom coordinates with four S (Fe) atoms belonging to the P4/nmm 
space group. Similar to FeS, FeS2 also has two different atomic 
structures: P3̄m1 and Pa3̄ (Fig. 4c,d, respectively). Note that hex-
agonal/triangular FeS (P63/mmc) and FeS2 (P3̄m1) have resembling 
structures. Their difference can be unambiguously recognized from  
the contrast ratio of Fe to S atom columns of the STEM-ADF  
images and EDS stoichiometry (Supplementary Figs. 53–56). The 
structure and STEM-ADF image analysis of FeS (FeS2) are pre-
sented in Supplementary Fig. 57. Similarly, FeSex and FeTex present 
similar crystal structures to FeSx (Fig. 4e–g,i–k), except for the fact 
that FeSe2 and FeTe2 nanowires belong to the Pmnn space group 
rather than Pa3̄ (Fig. 4h,l). Supplementary Figs. 53–76 provide a 
detailed analysis.
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Figure 4m–p shows the atomic-resolution STEM-ADF images 
and the corresponding EELS data of MnPS3, FePS3, NiPS3 and 
CdPSe3, respectively. Structurally, the primary unit cell of mono-
layer MPX3 is composed of one dumbbell-shaped P2X6 atom pack-
ing and two M atoms, forming a honeycomb structure with each 
M atom coordinating with six X atoms and each P atom coordi-
nating with one P and three X atoms28. When stacked along the 
vertical direction, the interplane displacement between the MPX3 
layers breaks the three-fold inversion rotation symmetry to gen-
erate a monoclinic lattice belonging to the C2/m space group. The 
STEM-ADF images of these four as-synthesized TMPCs manifest 
a six-fold symmetry lattice along the [103] zone axis, consistent 
with the characteristics of both hexagonal monolayer and mono-
clinic stacking for multilayer MPX3. Besides, the EELS spectrum 
reveals the core-loss singles of Mn L2,3 edge, Fe L2,3 edge, Ni L2,3 
edge and Cd M4,5 edge for the corresponding samples, confirming 

the element component of MPX3. Supplementary Figs. 77 and 78 
show the structures and energy bands of some materials.

More importantly, these 2D materials exhibit fascinating 
physical properties14,29,30, making them an emerging platform 
for fundamental studies and practical applications. However, 
tuning these properties through their compositions and phases 
is still challenging. Based on this growth mechanism, the com-
positions of 2D materials are well controlled. Figure 5a presents 
the temperature dependence of longitudinal resistance Rxx(T) 
of FeX with a tetragonal phase. All the three samples showed a 
semiconductor-like behaviour, that is, Rxx increases with decreas-
ing temperature. However, when the temperature is further 
reduced to around 70 K, a gradual crossover to a metallic con-
ducting behaviour is found due to a structural phase transition 
accompanied by a magnetic transition31–35. Interestingly, we find 
that Ts decreases from 80 K for 1T-FeS, 63 K for 1T-FeSe and 49 K 
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for 1T-FeTe. The metallic characteristics persist down to about 
10 K; then, Rxx(T) drops to zero, indicating the onset of supercon-
ductivity in tetragonal FeX. For clarity, Fig. 5b, inset, shows the 
zoomed-in view of the superconducting region. We find that the 
Tc values of FeS, FeSe and FeTe are 3.3, 7.3 and 11.0 K, respec-
tively, when the midpoint of the resistive transition is selected 
as the superconducting transition temperature Tc. The tempera-
ture evolution of longitudinal resistance Rxx(H) under different 
magnetic fields (Fig. 5b,c) further confirms the superconducting 
transition. Supplementary Fig. 79a,b shows more evidence and 
discussions of superconductivity36,37. Supplementary Fig. 80 dis-
cusses the properties of hexagonal FeX. In our experiment, both 
three-dimensional pyrite FeS2 and layered FeS2 were obtained. 
Notably, for three-dimensional pyrite FeS2, it has been predicted 
that the (111)-oriented three-atom-thick sheets have a stable fer-
romagnetic ground state38. However, to the best of our knowledge, 
there is no report about the property of layered FeS2 monolayer. 
Furthermore, 2D ferromagnetism was observed in layered FeX2 
monolayer in our work (Supplementary Fig. 36). The external 
magnetic field (H)-dependent Hall electrical resistivities (ρxy) of 
monolayer FeS2 at different temperatures are shown in Fig. 5d,e, 
and the Tc value of FeS2 is about 15 K, which is different from the 
predicted value for pyrite FeS2. Supplementary Table 5 shows a 
comparison of different 2D magnets. Meanwhile, FeX2 has a 
small bandgap, showing the potential applications in catalysis and 
photodetectors. Few-layer FeS shows a good hydrogen evolution 
reaction property (Supplementary Fig. 81). Figure 5f shows the per-
formance of typical FeTe2 infrared photodetectors under 940 nm 
laser illumination with different laser powers. The photocurrent 
increases with the laser power. Figure 5g,h shows the response 
speed of the FeTe2 infrared photodetector (10−90% photocurrent 
change for rise times and 90−10% for fall times). The rise and fall 
times are about 230 and 41 µs, respectively, better than most of 
the reported 2D TMDs. Supplementary Fig. 82 shows more results 
about FeX2 photodetectors. Supplementary Table 6 provides a 
comparison of Fe-based materials, with their structures and prop-
erties. Additionally, we study the antiferromagnetic properties 
of MPX3. Second-harmonic generation (SHG) has been demon-
strated to be a direct probe to the long-range antiferromagnetic 
orders and domains. The corresponding SHG properties of MPX3 
are shown in Supplementary Fig. 83. The temperature-dependent 
SHG intensity of MnPS3 (Supplementary Fig. 84) demonstrates 
its antiferromagnetic property. These illustrate the high quality 
of as-synthesized 2D materials with different compositions and 
show the platform to study physical properties and construct the 
ferromagnetism–superconductivity heterostructures.

In conclusion, we have demonstrated a general competitive- 
chemical-reaction-controlled CVD method for producing TMC 
and TMPC libraries. In total, 63 compounds and 4 heterostructures 
with different compositions and phases have been prepared. Our 
work not only opens a route to synthesize atom-thin TMCs and 
TMPCs but also demonstrates a novel growth mechanism, which 
is important for a comprehensive understanding of the growth 
mechanism of 2D materials. The prepared crystals with controllable 
phases and compositions as well as heterostructures will offer pos-
sibilities to explore physical phenomena, including 2D phase transi-
tions, 2D ferromagnetism, 2D superconductivity, Majorana bound 
states, spintronics and many-body excitons.
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Methods
Synthesis recipe. The 2D compounds and heterostructures were synthesized 
in a quartz tube (diameter, one inch). The length of the furnace is about 
36 cm (Supplementary Fig. 1). Specifically, the alumina boat with a volume of 
~8.0 cm × 1.1 cm × 0.6 cm containing the precursor powder was put in the centre of 
the tube. The corresponding MCl2 or mixed MCl2 with a large size was used as the 
precursor. Si/SiO2 was placed on the alumina boat with the surface facing down. 
The distance between the precursor source and substrate is about 0.2–0.3 cm. 
Another alumina boat containing S, Se or Te powder was put upstream of the tube 
furnace at ~120–200, ~220–300 and ~450–500 °C, respectively. The heating rate of 
all the reactions is 50 °C min–1. All the reactions were carried out at atmospheric 
pressure. The growth time of the Fe-based binary is 1 min and Ar/H2 gas at a flow 
rate of 120/6 s.c.c.m. was used as the carrier gas without any specific description. 
The temperature was cooled down to room temperature by blowing a fan. All the 
reaction materials were bought from Alfa Aesar with purity of more than 99%.

FeS-H (FeS-T). FeCl2 (2 mg for FeS-H and 5 mg for FeS-T) in an alumina boat was 
placed in the centre of the tube. The furnace was heated to the growth temperature 
(600–620 °C for FeS-H and 630–640 °C for FeS-T). The heating temperature of S  
(2 and 4 mg) is 120 and 140 °C, respectively.

FeS-H/FeS-T. FeCl2 (4 mg) in an alumina boat was placed in the centre of the tube. 
The furnace was heated to the growth temperature (~620–630 °C). The heating 
temperature of S (2 mg) is 130 °C.

FeS2-(trapezoidal (cubic) shape). FeCl2 (5 mg) in an alumina boat was placed in 
the centre of the tube. The furnace was heated to the growth temperature (660–675 
and 675–750 °C for the trapezoidal and cubic phase, respectively). The heating 
temperature of S (2 and 4 mg) is 160 and 170 °C, respectively.

FeS2-(hexagonal/triangular shape). FeCl2 (2 mg) in an alumina boat was placed  
in the centre of the tube. The furnace was heated to the growth temperature  
(640–660 °C). The heating temperature of S (2 mg) is 165 °C.

FeSe-H (FeSe-T). FeCl2 (2 mg for FeSe-H and 5 mg for FeSe-T) in an alumina 
boat was placed in the centre of the tube. The furnace was heated to the growth 
temperature (600–620 and 630–640 °C for FeSe-H and FeSe-T, respectively). The 
heating temperature of Se (2 and 4 mg, respectively) is 220 and 230 °C, respectively.

FeSe-H/FeSe-T. FeCl2 (3 mg) in an alumina boat was placed in the centre of  
the tube. The furnace was heated to the growth temperature of 620–630 °C.  
The heating temperature of Se (2 mg) is 230 °C.

FeSe2-(trapezoidal (hexagonal/triangular) shape). FeCl2 (5, 5 and 3 mg for the 
trapezoidal, orthorhombic and hexagonal/triangular shape, respectively) in an 
alumina boat was placed in the centre of the tube. The furnace was heated to 
the growth temperature (660–675, 675–750 and 640–660 °C for the trapezoidal, 
orthorhombic and hexagonal/triangular shape, respectively). The heating 
temperature of Se (4 and 2 mg, respectively) is 240 and 250 °C, respectively.

FeTe-H (FeTe-T). FeCl2 (2 and 5 mg for FeTe-H and 5 mg for FeTe-T) in an 
alumina boat was placed in the centre of the tube. The furnace was heated to 
the growth temperature (600–620 and 630–640 °C for FeTe-H and FeTe-T, 
respectively). The heating temperature of Te (5 and 10 mg, respectively) is 450  
and 470 °C, respectively.

FeTe-H/FeS-T. FeCl2 (5 mg) in an alumina boat was placed in the centre of the tube.  
The furnace was heated to the growth temperature (620–630 °C). The heating 
temperature of Te (10 mg) is 450 °C.

FeTe2-(trapezoidal (hexagonal/triangular) shape). FeCl2 (5 and 3 mg for the 
trapezoidal and hexagonal/triangular shape) in an alumina boat was placed in the 
centre of the tube. The furnace was heated to the growth temperature (650–675 
and 640–650 °C for the trapezoidal and hexagonal/triangular shape, respectively). 
The heating temperature of Te (10 mg) is 480 °C.

FeTe2-(orthorhombic shape). FeCl2 (5 mg) in an alumina boat was placed in the 
centre of the tube. The furnace was heated to the growth temperature (675–750 °C). 
The heating temperature of Te (10 mg) is 500 °C.

FeSxSe1–x-H (FeSxSe1–x-T). FeCl2 (3 and 5 mg for FeSxSe1–x-H and FeSxSe1–x-T, 
respectively) in an alumina boat was placed in the centre of the tube. The furnace 
was heated to the growth temperature (600–620 and 630–640 °C for FeSxSe1–x-H 
and FeSxSe1–x-T, respectively). The heating temperature of mixed S and Se (2 mg) 
is 140 °C.

FeSxSe1–x-H/FeSxSe1–x-T. FeCl2 (5 mg) in an alumina boat was placed in the centre 
of the tube. The furnace was heated to the growth temperature (620–630 °C).  
The heating temperature of mixed S and Se (4 mg) is 150 °C.

FeS2xSe2(1–x)-(trapezoidal shape). FeCl2 (5 mg) in an alumina boat was placed in the 
centre of the tube. The furnace was heated to the growth temperature (650–675 °C). 
The heating temperature of mixed S and Se (4 mg) is 180 °C.

FeS2xSe2(1–x)-(hexagonal/triangular shape). FeCl2 (3 mg) in an alumina boat was 
placed in the centre of the tube. The furnace was heated to the growth temperature 
(640–650 °C). The heating temperature of mixed S and Se (4 mg) is 200 °C.

FeS2xSe2(1–x)-(cubic/orthorhombic shape). FeCl2 (5 mg) in an alumina boat was 
placed in the centre of the tube. The furnace was heated to the growth temperature 
(660–750 °C). The heating temperature of mixed S and Se (4 mg) is 200 °C.

FeSxTe1–x-H. FeCl2 (2 mg) in an alumina boat was placed in the centre of the tube. 
The furnace was heated to the growth temperature (630–640 °C). The heating 
temperature of mixed S and Te (10 mg) is 450 °C.

FeSxTe1–x-T. FeCl2 (5 mg) in an alumina boat was placed in the centre of the tube. 
The furnace was heated to the growth temperature (640–650 °C). The heating 
temperature of mixed S and Te (10 mg) is 470 °C.

FeSexTe1–x-H. FeCl2 (5 mg) in an alumina boat was placed in the centre of the tube. 
The furnace was heated to the growth temperature (600–630 °C). The heating 
temperature of mixed Se and Te (10 mg) is 450 °C.

FeSexTe1–x-T. FeCl2 (5 mg) in an alumina boat was placed in the centre of the tube. 
The furnace was heated to the growth temperature (640–650 °C). The growth time 
is 1 min. The heating temperature of mixed Se and Te (10 mg) is 470 °C.

FeSxSeyTe1–x–y-H. FeCl2 (2 mg) in an alumina boat was placed in the centre of the 
tube. The furnace was heated to the growth temperature (610–630 °C). The heating 
temperature of S/Se (2 mg) and Te (10 mg) is 130 and 450 °C, respectively.

FeSxSeyTe1–x–y-T. FeCl2 (5 mg) in an alumina boat was placed in the centre of the 
tube. The furnace was heated to the growth temperature (630–650 °C). The growth 
time is 1 min. The heating temperature of mixed S/Se (2 mg) and Te (10 mg) is 150 
and 470 °C, respectively.

FeS2xSe2yTe2(1–x–y)-(trapezoidal shape). FeCl2 (5 mg) in an alumina boat was placed 
in the centre of the tube. The furnace was heated to the growth temperature 
(650–675 °C). The heating temperature of mixed S/Se (2 mg) and Te (10 mg) is 170 
and 480 °C, respectively.

Fe3GeTe2 (FeNbTe2/FeCuTe2). The pressed 10 mg mixed FeCl2/GeI2 (FeCl2/NbCl5 
or FeCl2/CuCl2) powder in an alumina boat was placed in the centre of the tube. 
The furnace was heated to the growth temperature (580–600 °C for Fe3GeTe2 and 
600–700 °C for FeNbTe2 and FeCuTe2). The heating temperature of Te (10 mg)  
is 500 °C.

FePS3 (MnPS3 and CdPS3). FeCl2 (MnCl2 and CdCl2) (10 mg) in an alumina 
boat was placed in the centre of the tube. The furnace was heated to the growth 
temperature (580–600 °C for FePS3 and CdPS3 and 590–600 °C for MnPS3). The 
heating temperature of S (10 mg) is 150 °C and P (10 mg) is 450 °C. The growth 
time is 3 min. Ar at a flow rate of 80 s.c.c.m. was used as the carrier gas.

FePSe3 (MnPSe3 and CdPSe3). FeCl2 (10 mg) in an alumina boat was placed in the 
centre of the tube. The furnace was heated to the growth temperature (580–600 °C 
for FePSe3 and CdPSe3 and 590–600 °C for MnPSe3). The heating temperature 
of Se is 250 °C and P is 450 °C. The growth time is 3 min. Ar/H2 at a flow rate of 
80/6 s.c.c.m. was used as the carrier gas.

NiPS3 (VPS3). NiCl2 (VCl3) (10 mg) in an alumina boat was placed in the centre 
of the tube. The furnace was heated to the growth temperature (580–600 °C). The 
heating temperature of S (10 mg) is 150 °C and P (10 mg) is 450 °C. The growth 
time is 3 min. Ar/H2 at a flow rate of 80/6 s.c.c.m. was used as the carrier gas.

CoPS3. CoCl2 (10 mg) in an alumina boat was placed in the centre of the tube. 
The furnace was heated to the growth temperature (670–750 °C). The heating 
temperature of S (10 mg) is 150 °C and P (10 mg) is 450 °C. The growth time is 
3 min. Ar/H2 at a flow rate of 80/6 s.c.c.m. was used as the carrier gas.

ZnPS3. ZnCl2 (10 mg) in an alumina boat was placed in the centre of the tube. 
The furnace was heated to the growth temperature (600–700 °C). The heating 
temperature of S (10 mg) is 150 °C and P (10 mg) is 450 °C. The growth time is 
3 min. Ar/H2 at a flow rate of 80/6 s.c.c.m. was used as the carrier gas.

Pd3P2S8. PdCl2 (10 mg) in an alumina boat was placed in the centre of the tube. 
The furnace was heated to the growth temperature (650–750 °C). The heating 
temperature of S (10 mg) is 150 °C and P (10 mg) is 450 °C. The growth time is 
4 min. Ar/H2 at a flow rate of 80/6 s.c.c.m. was used as the carrier gas.
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PdPSe. PdCl2 (10 mg) in an alumina boat was placed in the centre of the tube. 
The furnace was heated to the growth temperature (650–750 °C). The heating 
temperature of Se (10 mg) is 250 °C and P (10 mg) is 450 °C. The growth time is 
4 min. Ar/H2 at a flow rate of 80/6 s.c.c.m. was used as the carrier gas.

MnxCd1–xPS3. MnCl2 (5 mg) and CdCl2 (5 mg) in an alumina boat were placed in 
the centre of the tube. The furnace was heated to the growth temperature (~585–
600 °C). The heating temperature of S (10 mg) is 150 °C and P (10 mg) is 450 °C. 
The growth time is 3 min. Ar at a flow rate of 80 s.c.c.m. was used as the carrier gas.

MnxCd1–xPSe3. MnCl2 (5 mg) and CdCl2 (5 mg) in an alumina boat were placed 
in the centre of the tube. The furnace was heated to the growth temperature 
(~585–600 °C). The heating temperature of Se (10 mg) is 250 °C and P (10 mg) is 
450 °C. The growth time is 3 min. Ar/H2 at a flow rate of 80/6 s.c.c.m. was used as 
the carrier gas.

MnxFe1–xPS3. MnCl2 (5 mg) and FeCl2 (5 mg) in an alumina boat were placed in 
the centre of the tube. The furnace was heated to the growth temperature (~590–
600 °C). The heating temperature of S (10 mg) is 150 °C and P (10 mg) is 450 °C. 
The growth time is 3 min. Ar at a flow rate of 80 s.c.c.m. was used as the carrier gas.

MnxFe1–xPSe3. MnCl2 (5 mg) and FeCl2 (5 mg) in an lumina boat were placed in the 
centre of the tube. The furnace was heated to the growth temperature (~590–600 °C). 
The heating temperature of Se (10 mg) is 250 °C and P (10 mg) is 450 °C. The growth 
time is 3 min. Ar/H2 at a flow rate of 80/6 s.c.c.m. was used as the carrier gas.

FexCd1–xPS3. FeCl2 (5 mg) and CdCl2 (5 mg) in an alumina boat were placed in the 
centre of the tube. The furnace was heated to the growth temperature (~585–600 °C). 
The heating temperature of S (10 mg) is 150 °C and P (10 mg) is 450 °C. The growth 
time is 3 min. Ar at a flow rate of 80 s.c.c.m. was used as the carrier gas.

FexCd1–xPSe3. FeCl2 (5 mg) and CdCl2 (5 mg) in an alumina boat were placed 
in the centre of the tube. The furnace was heated to the growth temperature 
(~585–600 °C). The heating temperature of Se (10 mg) is 250 °C and P (10 mg) is 
450 °C. The growth time is 3 min. Ar/H2 at a flow rate of 80/6 s.c.c.m. was used as 
the carrier gas.

MnxFeyCd1–x–yPS3. MnCl2 (3 mg), FeCl2 (3 mg) and CdCl2 (3 mg) in an alumina 
boat were placed in the centre of the tube. The furnace was heated to the growth 
temperature (~585–600 °C). The heating temperature of S (10 mg) is 150 °C and P 
(10 mg) is 450 °C. The growth time is 3 min. Ar at a flow rate of 80 s.c.c.m. was used 
as the carrier gas.

MnxFeyCd1–x–yPSe3. MnCl2 (3 mg), FeCl2 (3 mg) and CdCl2 (3 mg) in an alumina 
boat were placed in the centre of the tube. The furnace was heated to the growth 
temperature (~585–600 °C). The heating temperature of Se (10 mg) is 250 °C and  
P (10 mg) is 450 °C. The growth time is 3 min. Ar/H2 at a flow rate of 80/6 s.c.c.m. 
was used as the carrier gas.

CuCr(PS3)x. CuCl2 (5 mg) and CrCl2 (5 mg) in an alumina boat were placed in the 
centre of the tube. The furnace was heated to the growth temperature (~620–650 °C). 
The heating temperature of S (10 mg) is 150 °C and P (10 mg) is 450 °C. The growth 
time is 3 min. Ar/H2 at a flow rate of 80/6 s.c.c.m. was used as the carrier gas.

STEM-ADF imaging. The STEM samples were prepared with a poly(methyl 
methacrylate) (PMMA)-assisted method or PMMA-free method with the 
assistance of isopropyl alcohol droplets. For some water-sensitive materials, we 
used a non-aqueous transfer method. STEM imaging and EELS analysis were 
performed on a JEOL 2100F instrument with a cold field-emission gun and an 
aberration corrector (delta corrector) operating at 60 kV. A Gatan GIF Quantum 
instrument was used for recording the EELS spectra. The inner and outer 
collection angles for the STEM image (β1 and β2) were 62 and 129–140 mrad, 
respectively, with a convergence semi-angle of 35 mrad. The beam current was 
about 15 pA for the annular dark-field imaging and EELS chemical analysis.

TGA-DSC. The TGA and differential scanning calorimetry (DSC) measurements 
were performed using a NETZSCH STA 449C thermal analyser. Approximately 

10 mg of the sample was loaded into an alumina crucible and heated at 50 K min−1 
from 20 to 700 °C. Ar at a flow rate of 40 ml min−1 was used as the carrier gas.

Device fabrication and transport measurements. The Hall bar are patterned on 
few-layer Fe-based 2D materials using electron-beam lithography. Ti/Au (5/50 nm) 
electrodes are deposited using the thermal evaporator, followed by the lift-off 
process. To avoid oxidation, the samples were covered by PMMA in a glove box 
after growth.

Data availability
The main data supporting the findings of this study are available within the 
article and Supplementary Information. Additional data are available from the 
corresponding authors upon reasonable request.
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