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SPECIAL TOPIC — Recent progress on kagome metals and superconductors
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The kagome superconductor CsV3Sb5 has attracted widespread attention due to its rich correlated electron states in-
cluding superconductivity, charge density wave (CDW), nematicity, and pair density wave. Notably, the modulation of the
intertwined electronic orders by the chemical doping is significant to illuminate the cooperation/competition between multi-
ple phases in kagome superconductors. In this study, we have synthesized a series of tantalum-substituted Cs(V1−xTax)3Sb5
by a modified self-flux method. Electrical transport measurements reveal that CDW is suppressed gradually and becomes
undetectable as the doping content of x is over 0.07. Concurrently, the superconductivity is enhanced monotonically from
Tc ∼ 2.8 K at x = 0 to 5.2 K at x = 0.12. Intriguingly, in the absence of CDW, Cs(V1−xTax)3Sb5 (x = 0.12) crystals
exhibit a pronounced two-fold symmetry of the in-plane angular-dependent magnetoresistance (AMR) in the superconduct-
ing state, indicating the anisotropic superconducting properties in the Cs(V1−xTax)3Sb5. Our findings demonstrate that
Cs(V1−xTax)3Sb5 with the non-trivial band topology is an excellent platform to explore the superconductivity mechanism
and intertwined electronic orders in quantum materials.
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1. Introduction

Kagome lattice, formed by corner-sharing triangles,
naturally hosts special electronic structures including flat
bands, Dirac fermions and van Hove singularity (VHS).[1]

It provides a fertile platform to explore the magnetism,[2,3]

quantum spin liquid,[4] non-trivial topological band[5] and
superconductivity.[6] The recently discovered vanadium-based
kagome superconductor family AV3Sb5 (A = K, Rb, Cs) has
attracted tremendous attention. The material family showcases
the non-trivial Z2 band topology,[7] CDW (78 K–105 K),[8]

superconductivity (0.8 K–3 K),[6,9,10] nematicity[11] and chi-
ral charge order.[12] For interesting CDW states, the 2a0×2a0

charge modulation exhibits a chiral anisotropy with an unusual
magnetic field response.[13] Chiral flux phases and orbital cur-
rents are proposed to explain the unconventional CDW, which
can give rise to the broken time-reversal symmetry and anoma-
lous Hall effect.[14–17] The three-dimensional properties of
CDW are also observed although the stacking patterns (2a0×
2a0× 2a0 or 2a0× 2a0× 4a0) remain controversial. For the
intriguing superconducting states, double-dome superconduc-
tivity under pressure[18–20] is observed and ascribed to a pos-
sible stripe-like CDW order.[21] A finite residual linear term of

thermal conductivity in zero magnetic field and its large field
dependence give evidence for nodal superconducting gap.[22]

A clear exponential behavior in magnetic penetration depth
suggests a nodeless superconductivity.[23] Specially, the pair
density wave with unconventional superconductivity[24] and
possible higher-charge superconductivity[25,26] are observed in
CsV3Sb5. These results indicate that the full comprehensive
understanding of superconductivity mechanism still requires
further studies.

Spontaneous rotation symmetry breaking (RSB) in the su-
perconducting state is an important phenomenon that sheds
light on the underlying superconductivity mechanism.[27,28] In
our previous work, a two-fold symmetry of in-plane angular
magnetoresistance (AMR) in CsV3Sb5 was observed in the
mixed state,[29] which indicates the anisotropic superconduct-
ing properties. Due to the intertwining of CDW, nematicity
and topological superconductivity, the mechanism of two-fold
AMR in the superconducting state is difficult to determine.[30]

Chemical doping can provide an effective way to modu-
late the superconductivity and other intertwined orders, the
enhanced superconductivity with the suppression of CDW
and double-dome superconducting characteristic are observed
in the chemical doping CsV3Sb5, including CsV3−xTixSb5
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and CsV3Sb5−xSnx.[31,32] Under the inspiration, the Ta-doped
CsV3Sb5 shows the highest Tc in the AV3Sb5 family materi-
als under the ambient pressure, and isotropic nodeless super-
conducting gap for the insights into the superconducting pair-
ing mechanism.[33] However, the electrical transport study on
the symmetry of superconducting states in Cs(V1−xTax)3Sb5

is still absent.
In this work, we have successfully synthesized Ta-doped

Cs(V1−xTax)3Sb5 (0 ≤ x ≤ 0.12) single crystals by a mod-
ified self-flux method and investigated the evolution of su-
perconductivity and CDW with doping concentration via the
electrical transport measurements. With increasing the dop-
ing concentration of Ta, the CDW is suppressed gradually
and becomes undetectable at the doping concentration over
0.07. Concurrently, superconductivity is enhanced monoton-
ically, indicating a possible competitive relationship between
CDW and superconductivity. The upper critical field Hc2 can
be fitted well by using the two-band model in both the pris-
tine CsV3Sb5 and Cs(V1−xTax)3Sb5 crystals, indicating that
the multi-band superconducting feature is preserved after the
Ta-doing. Interestingly, even in the absence of CDW-induced
rotation symmetry breaking, an explicit two-fold symmetry
of AMR in the superconducting state can be observed in the
Cs(V1−xTax)3Sb5 (x = 0.12) crystal, indicating the existence
of pronounced anisotropic superconducting properties. These
results suggest that the charge order is not the main reason for
the existence of the RSB in Ta-doped CsV3Sb5 superconduc-
tors. Our work demonstrates that Cs(V1−xTax)3Sb5 can serve
as a new and “clean” platform to explore anisotropic super-
conducting properties, and furthermore provides new insights
into the understanding of topological superconductivity.

2. Preparation of Ta-doped CsV3Sb5 crystals
Cs(V1−xTax)3Sb5 single crystals were synthesized from

Cs liquid (Alfa, purity 99.98%), V powder (Alfa, purity
99.9%), Ta powder (Alfa, purity 99.98%) and Sb shot (Alfa,
purity 99.999%) via a self-flux method. The mixture of all raw
materials was placed into an alumina crucible and then sealed
in a quartz ampoule under a high vacuum atmosphere. Sub-
sequently, the sealed quartz ampoule was heated to 1100 ◦C,
held for 72 hours, and gradually cooled down to 500 ◦C at a
rate of 2 ◦C per hour. Finally, the single crystals were sepa-
rated from the flux. Due to the high reactivity of the cesium,
all preparation procedures were carried out in an argon-filled
glovebox, except for the sealing and reaction procedures.

3. Results and discussion
Upon the Ta-doping, Ta atoms would substitute the

V atoms in the kagome plane, which results in a
stacking structure of Cs–Sb2–(V/Ta)Sb1–Sb2–Cs layers in

Cs(V1−xTax)3Sb5 (as illustrated in Fig. 1(a)).[34] To ensure the
Ta doping, a longer duration time and higher incubation tem-
perature were applied in the preparation of Cs(V1−xTax)3Sb5

single crystals. The as-prepared Cs(V1−xTax)3Sb5 crystal
shows a regular hexagonal morphology (Fig. 1(b)), indicating
the perfect growth of the kagome plane with hexagonal sym-
metry. To determine the doping concentration of Ta, energy
dispersive spectroscopy (EDS) was employed. As shown in
Fig. 1(c), the peaks of Ta, Cs, V, Sb can be clearly observed
at around 1 keV–5 keV, indicating the successful synthesis of
Ta-doped CsV3Sb5 single crystals. The typical EDS result in-
dicates the atomic ratio of 0.96:2.65:0.35:4.77 for Cs:V:Ta:Sb,
corresponding to x = 0.12.

As the elements are in the same group, tantalum ions
(r(Ta4+)= 0.68 Å) have a larger ionic radius than that of vana-
dium ions (r(V4+) = 0.58 Å). The substitution of Ta ions to V
ions can induce changes of the crystalline lattice parameters.
A series of x-ray diffraction (XRD) patterns at x = 0, 0.03,
0.07, 0.09, 0.12 show diffraction peaks of a preferred [00l]
orientation (as shown in Fig. 1(d)). The enlarged (004) peak at
38.5◦ to 38.9◦ from Kα1 = 1.54056 Å and Kα2 = 1.54439 Å
clearly shows a shift to higher degree with the increasing dop-
ing concentration (Fig. 1(e)). The lattice parameters a, b, and
c are determined to be 5.532 Å, 5,532 Å, and 9.320 Å by
the four-circle single crystal diffractometer, which are slightly
bigger in a and b axes than those of pristine CsV3Sb5 (5.509 Å,
5.509 Å, and 9.340 Å, respectively) due to the larger ionic ra-
dius of Ta4+. The tiny lattice change is only 0.4% and 0.2%
in a and c axis, indicating a negligible chemical pressure. The
x-ray rocking curve analysis reveals that the full width at half
maximum (FWHM) of (004) reflection is only 0.12◦, suggest-
ing that the crystal is of high quality.

To investigate the evolution of CDW and superconductiv-
ity with the increasing doping concentration, the normalized
temperature-dependent resistivity curves (ρ–T ) were mea-
sured with the temperature ranging from 2 K to 300 K and
displayed a metallic behavior above 6 K as shown in Fig. 2(a).
The anomaly below 94 K indicating the CDW transition was
clearly observed in the Ta-doped samples with the low dop-
ing concentration and the anomaly was gradually moved to
lower temperature as the doping concentration x increased.
To more clearly visualize the CDW transition, the derivative
electrical resistivity dρ/dT curves are presented in Fig. 2(b).
The peaks marked by arrows show the transition temperature
TCDW, which decreases from 94 K in pristine sample to about
44 K at x = 0.07, and becomes undetectable as x exceeds 0.07.
The evolution of superconductivity is opposite to that of CDW.
An enlarged view of ρ–T curves below 10 K clearly shows
a monotonic increase of the transition temperature of super-
conductivity Tc with the increase of the doping concentration
(Fig. 2(c)). With the increasing doping concentration, Tc in-
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creases from 2.8 K at x = 0 to about 4.0 K at x = 0.07, and
eventually to approximately 5.2 K at x = 0.12. The phase
diagram of Cs(V1−xTax)3Sb5 single crystals is presented in
Fig. 2(d), where TCDW and Tc are summarized as a function of
substitution content x. It can be found that the superconductiv-
ity is monotonically enhanced upon the suppression of CDW,

which is distinct from the emergence of double-dome in the
pressed CsV3Sb5 and CsV3−xTixSb5. In the Cs(V1−xTax)3Sb5

case, the boosting superconductivity can contribute to the rare
coexistence of both electrons and holes at the VHS, which in-
duces an attractive component of the Coulomb interaction for
an unconventional electronic pairing.[35]
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Fig. 1. Characterization of Cs(V1−xTax)3Sb5. (a) Schematic diagram of crystal structure of Ta-substituted Cs(V1−xTax)3Sb5. The Cs atoms are
depicted in blue, Sb atoms in yellow, V atoms in green and Ta atoms in red. The V atoms form a perfect kagome layer and are replaced by Ta
atoms partially. (b) An optical photograph of a Cs(V1−xTax)3Sb5 crystal, showing hexagonal morphology. (c) Energy dispersion spectrum of
a typical sample, indicating an atomic ratio of Cs:V:Ta:Sb = 11.00:30.32:4.04:54.64. (d) XRD patterns of a series of Cs(V1−xTax)3Sb5 single
crystals, showing the same reflections. (e) A detailed view of the XRD pattern around 38.7◦ shows the (004) peak shifting to higher degrees as
the doping concentration increases, indicating a slight change in the c-axis parameter due to the Ta substitution. (f) The rocking curve of (004)
reflection, showing a small FWHM of 0.12◦.
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Fig. 2. Electrical transport properties of Cs(V1−xTax)3Sb5. (a) The nor-
malized temperature-dependent resistivity ρ–T curves at 2 K–300 K.
(b) The derivative of electrical resistivity (dρ/dT ) curves, indicating the
evolution of the CDW transitions at low doping concentrations. (c) An
enlarged view below 10 K of (a), showing an enhanced superconductiv-
ity upon the Ta-doping. (d) Phase diagram of Cs(V1−xTax)3Sb5 with the
increasing doping concentrations.

To obtain the superconducting upper critical field Hc2(T )
for both the pristine CsV3Sb5 and Cs(V1−xTax)3Sb5 (x =

0.12) crystals, the normalized temperature-dependent resistiv-
ity ρ–T under different magnetic fields were conducted. As
shown in Figs. 3(a) and 3(b), the resistivity transitions show
no significant broadening in out-of-plane magnetic fields.
The temperature-dependent upper critical fields are plotted in
Fig. 3(c), where Hc2(T ) corresponds to 50% of the normal
state resistance. The temperature dependence of the obtained
out-of-plane Hc2 shows positive curvatures near Tc. Accord-
ingly, the behavior of Hc2 is well fitted by a two-band model
and the zero-temperature critical field Hc2(0) is estimated at
0.26 T for x = 0 and 1.7 T for x = 0.12,[36] indicating a seven
times enhancement. The similar enhancement is observed in
the in-plane critical field, as shown in Figs. 3(d) and 3(e), the
Hc2(0) also increases from 2.7 T for x = 0 T to 7.6 T for x =

0.12. These results demonstrate that Ta-doping significantly
enhances not only Tc, but also the critical field. The coher-
ence lengths can be derived from the upper critical fields via
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µ0Hc2,c = Φ0/(2πξ 2
c ) and µ0Hc2,ab = Φ0/(2πξabξc). Here,

the Φ0 is the magnetic flux quantum. The derived data are
summarized in Table 1. The anisotropic ratio of the coherence
length for the sample with x = 0.12 is γ = ξab/ξc ≈ 4, which is
smaller than γ ≈ 9 for the pristine CsV3Sb5. Since the angle-
resolved photoemission spectroscopy results reveal a VHS
perfectly aligned with the Fermi level with negligible changes
on other low-energy states and their associated electron–boson
coupling as a function of the Ta doping, a direct link between
the substantially enhanced superconductivity and the VHS at
the Fermi level is proposed.[35] Thus, the smaller anisotropic
ratio of the coherence length for Cs(V1−xTax)3Sb5 (x = 0.12)
crystals can be ascribed to the appearance of the VHS at Fermi
level after the Ta doping.

Table 1. Superconducting parameters of pristine and Ta-doped CsV3Sb5
crystals.

Tc µ0Hc2,ab(0) µ0Hc2,c(0) ξc ξab
γ

(K) (T) (T) (nm) (nm)

CsV3Sb5 2.8 2.7 0.26 3.43 35.58 10

Cs(V1−xTax)3Sb5 5.2 7.6 1.7 3.11 13.91 4
(x = 0.12)

In the pristine CsV3Sb5, a two-fold symmetry of resis-
tance in the mixed state has been observed in our previous
work.[29,30] To further investigate the anisotropic supercon-
ductivity in Cs(V1−xTax)3Sb5, we conducted the AMR mea-

surements of Cs(V1−xTax)3Sb5 (x = 0.12) crystal since it can
provide a relatively “clean” platform without the interference
of CDW to explore the symmetry of the superconducting state.
The in-plane AMR was measured below Tc of 5.0 K with mag-
netic field rotating within the ab-plane (H‖ab). Figure 4(a)
presents the AMR results at 4.5 K under an in-plane mag-
netic field from 0 T to 5 T. Since the resistivity minimum
touches zero in the AMR curve measured at 0.1 T, the two-
fold symmetry of AMR curves is supposed to be induced by
the anisotropic properties of the superconducting state. The
AMR curves under 0.5 T and 0.7 T exhibit a pronounced
two-fold symmetry, showing two minima near θ = 75◦ and
255◦ in the absence of CDW. To estimate the strength of
relative change of the anisotropic AMR signal, the ratios of
( ∆R

Rmin
= (R(θ ,T )−Rmin(T ))

Rmin(T )
× 100%) are summarized in Fig. 4(b)

by polar-coordinate plots. The AMR ratio reaches up to 110%
at 0.5 T, which reveals the emergence of strong anisotropic
scatterings under the magnetic field in the mixed state. Such a
high AMR ratio also indicates that the anisotropic magnetore-
sistance is not dominated by the minor misalignment angles
between the magnetic field and the ab plane. With the increas-
ing magnetic fields above 1.5 T, AMR curves are dominated
by normal-state properties. Surprisingly, the two-fold symme-
try of Cs(V1−xTax)3Sb5 crystal disappears at 4.5 K under 2 T
and 5 T, which indicates the absence of RSB in the normal
state.
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Based on the above results, the effect of CDW can
be excluded since a pronounced two-fold symmetry of re-
sistivity still exists in the superconducting state of the
Cs(V1−xTax)3Sb5 (x = 0.12) in the absence of CDW. And
the two-fold symmetry is also impossible from the nematicity
since it becomes undetectable in the normal state.[35] Gener-
ally, the superconductivity accompanied by RSB is a common
feature in topological superconductors, such as CuxBi2Se3 and
SrxBi2Se3.[37–39] In a topological superconductor, the uncon-
ventional superconductivity with the odd-parity pairing sym-
metry will exhibit an anisotropic response as the field rotates
within the plane.[37] CsV3Sb5 is proposed to be a topological
superconductor,[6,40,41] suggesting that the observed RSB may
be attributable to the odd-parity pairing symmetry of the su-
perconducting electrons. Additionally, a recent µSR measure-
ment on the CDW-suppressed Cs(V1−xTax)3Sb5 (x = 0.14)
sample is mentioned to provide evidence for the potential pres-
ence of time-reversal symmetry-breaking superconductivity,
which suggests the complex superconductivity in the AV3Sb5

family materials.[33] Further investigation is desired to under-
stand the origin and this symmetry feature of the anisotropic
superconducting properties in both pristine and Ta-doped sam-
ples.

4. Conclusion
We have successfully synthesized a series of Ta-doped

CsV3Sb5 samples with different Ta doping concentrations
using a modified self-flux method. Electric transport mea-
surements reveal that superconductivity is monotonically en-
hanced from Tc of 2.8 K for x = 0 to 5.2 K for x = 0.12 by the
Ta-doping. While, the CDW transition is suppressed rapidly
and becomes undetectable with the Ta doping concentration
over 0.07. The Cs(V1−xTax)3Sb5 (x > 0.07) with the absence

of CDW provides a clean platform to investigate the intrin-
sic superconductivity. The in-plane AMR of Cs(V1−xTax)3Sb5

(x = 0.12) shows a pronounced two-fold symmetry in the su-
perconducting state with an enhanced superconductivity. This
work reveals that the anisotropic superconducting property is
still preserved in the Ta-doped CsV3Sb5 without CDW, indi-
cating the robustness of the RSB in the superconducting state.
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