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Abstract
A model, without adjustable parameters, describing the size-dependent phonon
frequency of semiconductor nanocrystals is established based on the size-
dependent force constant and thus the size-dependent bond length and bond
energy of nanocrystals. This model shows frequency shifts as the size of the
crystals decreases. Our predictions agree with the results of experiments for
the blue shift of TiO2 nanoparticles, Si and InP quantum dots. The model will
be useful for understanding the origins of the phonon behaviour of nanocrystals
and the effect of the thermodynamic parameters on the phonon frequency.

Semiconductor nanocrystals, including nanoparticles and quantum dots, have drawn a great
deal of attention in the past decade due to their peculiar electronic and optical properties
compared to their bulk counterparts [1]. In particular, the phonon behaviour of semiconductor
nanocrystals is of great interest to both scientific and technological communities [2–9].
Some experiments have shown phonon frequency shifts with the reduction in the size of
crystals by means of Raman spectra [2–6], but the mechanism behind the lattice vibration
is less well understood. Related interpretations include surface pressure and the phonon
confinement effect. Most of the theoretical study of phonon modes is based on continuum
dielectric models [7]. However, these models are limited to small-sized quantum dots of a few
nanometres. A microscopic lattice dynamical calculation has already been developed [8, 9].
But a major difficulty of microscopic modelling phonon modes is its computational intensity.
A simple and reliable description for phonon behaviour of semiconductor nanocrystals is
desirable because it is related to many optical, transport and thermal properties.

In this paper, a quantitative model for the size-dependent phonon frequency of
semiconductor nanocrystals is established based on the size-dependent bond length and bond
energy. The force constant of nanocrystals is not assumed to be the same as that of the bulk as
has been done in the previous theoretical models, but is considered to be size-dependent in our
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model. The model’s predictions for the blue shift of the phonon frequency of semiconductor
nanoparticles and quantum dots correspond well to recent experimental data and calculated
results. The model is expressed by an analytic equation with available thermodynamic
quantities, which may be useful for understanding the origins of the phonon frequency shift
of nanocrystals and the effect of the thermodynamic parameters on the lattice vibration.

It is well known that the atomic vibration frequency ωb of bulk crystals is proportional to
the square root of the force constant β [10], i.e.,

ωb = cβ1/2, (1)

where c is a constant, the force constant β = c1ε/h2 is the second-order derivative of the
interatomic potential at equilibrium atomic distance, h is the equilibrium atomic distance or
bond length, ε is the atomic binding energy or bond energy, and c1 is a constant. Therefore,
ωb = c2(ε/h2)1/2 with a constant c2.

Let ω(d) denote the size-dependent frequency, where d is the diameter of nanoparticles
or quantum dots; it is reasonable that we assume that ω(d) can be similarly determined
by the force constant, and thus the bond energy and bond length with size effect, i.e.,
ω(d) = cβ(d)1/2 = c2[ε(d)/h(d)2]1/2, where β(d), ε(d) and h(d) are the corresponding
size-dependent β, ε and h, respectively. Therefore, the ratio ω(d)/ωb can be written as

ω(d)

ωb
= h

h(d)

√
ε(d)

ε
, (2)

where the bond length change h/h(d) is related to the lattice strain δ by h/h(d) = 1/(1 + δ),
δ = [h(d) − h]/h. According to the Laplace–Young equation [11], the size-dependent
strain δ = −4κ f/(3d) for a particle, where κ is the compressibility of the crystal and f
is an intrinsic surface stress. Through establishing a relationship between f and the size-
dependence of the solid–liquid interface energy [11], the deduction leads to the surface stress
f = ±[(3γid0)/(8κ)]1/2 with a critical size d0 and the bulk solid–liquid interface energy
γi . Since γi = 2hSvib Hm(T )/(3Vc R) with the vibration entropy Svib, the temperature (T )-
dependent melting enthalpy Hm(T ), the molar volume of the crystal Vc and ideal gas constant
R [11, 12], δ = ± 2

3d

√
κd0hSvib Hm(T )/(RVc).

According to the Helmholtz function, Hm(T ) = gm(T ) − T dgm (T )/dT , where
gm(T ) is the volume Gibbs free energy difference between the crystal and the liquid. For
semiconductors, gm(T ) = Hm(Tm − T )T/T 2

m in terms of the difference of specific heat
between the crystal and the liquid, Hm(T ) = Hm(T/Tm)2, where Hm is the melting enthalpy
at melting point Tm [13]. Finally,

h

h(d)
= 1

1 ± 2
3d

√
κd0hSvib HmT 2/(RVcT 2

m)
, (3)

where the negative sign is taken for lattice contraction [11]. The critical diameter d0 of a crystal
is defined as the size at which almost all atoms are located on the crystal’s surface. Given that
the definition of d0, h A/V = hπd2

0 /(πd3
0/6) = 1 for a spherical particle with surface area

A and volume V , d0 = 6h. The vibration entropy Svib denotes the vibrational part of melting
entropy Sm; for semiconductors, Svib ≈ 0.4Sm because of the larger contribution of electronic
entropy to Sm [14]. T is taken as room temperature considering corresponding experimental
conditions [2–6]. The compressibility κ = 1/B with bulk modulus B . The molar volume
Vc = M/ρ with molar mass M and density ρ of the crystal.

For the change of bond energy ε(d)/ε in equation (2), let the coordination number of an
atom in the bulk crystal be n, and the corresponding cohesion energy of one molar crystal
E = nNaε/2, with Avogadro constant Na , ε = 2E/(nNa). When the surface effect is
not negligible, as is the case of nanocrystals with large surface-to-volume ratio and severe
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Figure 1. ω(d)/ω as a function of the diameter of TiO2 nanoparticles, where the solid curve
shows the prediction of equation (2) combined with equations (3) and (4), and the triangles and
the squares are the experimental results from [4] and [5], respectively. B = 15.02 GPa [16].
h = a/

√
2 and a = 0.458 nm [17]. Sm = 10.45 J g-atom−1 K−1 [17]. M = 79.88 g mol−1 and

ρ = 3.84 g cm−3 [17]. Ns = 3/2. ns = 7 and n = 14. Other parameters are given in table 1.

surface breaking bonds, E(d) = [(n − ns)y + n(1 − y)]Naε(d)/2 = (n − ns y)Naε(d)/2 or
ε(d) = 2E(d)/[(n − ns y)Na], where y = d0/d is the ratio of the number of surface atoms to
the total number of atoms, and ns denotes the decrease of surface atomic coordination number
compared with n. Therefore, ε(d)/ε = [E(d)/E]/[1 − ns y/n]. Taking E − E(d) ≈ γs Af

as a first order approximation, where γs is surface energy of the crystal and Af = 6Vc/d is a
surface-volume transforming factor [15], we have

ε(d)

ε
= 1 − 6γsVc

Ed

1 − ns
n

d0
d

, (4)

where ns and n are both determined by considering the nearest-neighbour and next-nearest-
neighbour of the corresponding structure. The surface energy γs can be approximately
calculated by the change of internal energy per unit area of the (100) face, i.e., γs ≈
Nsns(ε/2)/a2 = Nsns E/(nNaa2) with the number of atoms per unit area of (100) face Ns,
and the lattice constant a. Through substituting equations (3) and (4) into (2), ω(d)/ωb could
be determined.

Figures 1–3 show a comparison between the model’s predictions and recent experimental
measurements and calculated results of the size-dependent phonon frequency of TiO2

nanoparticles [4, 5], Si and InP quantum dots [6, 9]. It can be found that the model prediction
is in agreement with the experimental evidence and calculation data. The phonon frequency
increases as the size of crystals decreases, i.e., blue shift occurs. And the frequency shift is
about 1%–5% in the range of 2–50 nm. When d → d0, blue shift becomes notable, which
may be due to the special structure with almost all atoms on the surface. It is interesting that
although equation (1) is based on the Einstein model, the model can predict the frequency
shift of general phonon modes, including the optical modes with the lower frequency as the
experiments show [4–6, 9]. This may be because what the model emphasizes is a relative
change of nanocrystals compared to the bulk.
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Figure 2. ω(d)/ω as a function of the diameter of Si quantum dots, where the solid curve shows the
prediction of equation (2) combined with equations (3) and (4), and the symbols are the calculated
results of the transverse optical mode at x point [9]. ns = 6 and n = 16. Other parameters are
given in table 1.
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Figure 3. ω(d)/ω as a function of the diameter of InP quantum dots, where the solid curve
shows the prediction of equation (2) combined with equations (3) and (4), and the symbols are
experimental results of the transverse optical mode [6]. h = √

3a/4 and a = 0.587 nm [17].
Sm = 23.83 J g-atom−1 K−1 [14]. M = 145.79 g mol−1 and ρ = 4.787 g cm−3 [17]. Ns = 1.
ns = 6 and n = 16. Other parameters are given in table 1.

It is clear that when the bond length contracts and the bond energy increases with
decreasing crystal size, the phonon frequency is enhanced in terms of equation (2). The model
indicates that the phonon blue shift originates from several contributing factors: one is intrinsic
surface tension stress and the concomitant lattice contraction of nanocrystals determined by
equation (3), which has already been confirmed by experiments [11] and causes a lattice
vibration change compared with the corresponding bulk. At the same time, the increase of
the atomic binding energy based on equation (4) also contributes to the phonon behaviour
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Table 1. The related parameters used in figures 1–3.

TiO2 Si InP

κ (10−10 Pa−1) 0.670 0.306 [17] 0.735 [17]
h (nm) 0.3239 0.2352 [18] 0.2542
d0 (nm) 1.9434 1.4112 1.5252
Svib (J g-atom−1 K−1) 4.18 6.72 [14] 9.53
Hm(103 J mol−1) 66.88 [17] 50.55 [19] 50.16 [14]
Vc (cm3 mol−1) 20.802 12.100 [19] 30.455
Tm (K) 2128 [17] 1685 [19] 1330 [17]
γs (J m2) 3.994 1.568 [20] 0.358
E (103 J mol−1) 672.4 [17] 446.0 [21] 197.9 [17]
ns/n 1/2 3/8 3/8

change of nanocrystals, which results from the large numbers of surface breaking bonds and
the intrinsic small size effect. In addition, the changes of bond length and bond energy are both
relative to the large surface-to-volume ratio d0/d of nanocrystals. Consequently, the phonon
frequency is roughly proportional to 1/d2 in our model, which is different from the previously
predicted linear relation of 1/d [3].

To some extent, the physics of our model conforms to the discussion on surface bond
contraction and bond strengthening and thus phonon frequency increase [10, 22]. Note that
the model is different from the surface pressure interpretation [23], which is related to external
influence. The relation of 1/d2 in our model implies not only intrinsic surface effects but also
internal contributions, such as quantum confinement and electron–phonon interaction; all have
an influence on phonon vibration. The quantum and surface effects become dominant with
decreasing crystal size; phonon frequency shifts obviously at the size of d0; then the lattice
may be degenerate. Because d0 of TiO2 is larger, the frequency increase of TiO2 nanoparticles
is more obvious than that of Si and InP quantum dots at the range of d < 10 nm, as shown in
figures 1–3.

Note that our prediction is based on the isotropic assumption. In fact, phonon behaviour
will exhibit diversity in different orientations; for example, red shifts can be observed [23],
which may be due to bond length expansion and bond energy decrease. In that case, the surface
stress and average lattice strain state, surface atomic coordinate number and internal energy
will be different, which may also be due to a special interface condition such as the matrix
interacting with the nanoparticles; how they interact has to be studied further. The effect of
the matrix is indeed in dispute [24]. Although the phonon distribution is not always with a
single size-dependent frequency, the model will be helpful to understand the phonon behaviour
change of nanocrystals compared to that of the bulk.

The model is expressed by some available thermodynamic quantities such as vibration
entropy Svib, which may reflect the inherent correlation between the thermodynamic properties
and phonon vibration. Consequently, as a mesoscopic bridge between a micro-mechanism
and a macro-phenomenon, the model provides a simple feasible method to derive a detailed
description of the phonon frequency of nanocrystals.

In conclusion, a model, without adjustable parameters, for the size-dependent phonon
frequency of semiconductor nanocrystals is developed based on the size-dependent bond
length and bond energy. The model prediction is consistent with experimental results on
semiconductor nanoparticles and quantum dots. The model demonstrates that the blue shift
may originate from the intrinsic surface stress and lattice strain, the surface bond state and the
inherent small size effect.
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